Python data.image_folder.make_dataset() Examples
The following are 30
code examples of data.image_folder.make_dataset().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
data.image_folder
, or try the search function
.
Example #1
Source File: gta5_cityscapes.py From MADAN with MIT License | 6 votes |
def initialize(self, opt): self.opt = opt self.root = opt.dataroot self.dir_A = os.path.join(opt.dataroot, 'gta5', 'images') self.dir_B = os.path.join(opt.dataroot, 'cityscapes', 'leftImg8bit') self.dir_A_label = os.path.join(opt.dataroot, 'gta5', 'labels') self.dir_B_label = os.path.join(opt.dataroot, 'cityscapes', 'gtFine') self.A_paths = make_dataset(self.dir_A) self.B_paths = make_dataset(self.dir_B) self.A_paths = sorted(self.A_paths) self.B_paths = sorted(self.B_paths) self.A_size = len(self.A_paths) self.B_size = len(self.B_paths) self.A_labels = make_dataset(self.dir_A_label) self.B_labels = make_cs_labels(self.dir_B_label) self.A_labels = sorted(self.A_labels) self.B_labels = sorted(self.B_labels) self.transform = get_transform(opt) self.label_transform = get_label_transform(opt)
Example #2
Source File: unaligned_dataset.py From 2019-CCF-BDCI-OCR-MCZJ-OCR-IdentificationIDElement with MIT License | 6 votes |
def __init__(self, opt): """Initialize this dataset class. Parameters: opt (Option class) -- stores all the experiment flags; needs to be a subclass of BaseOptions """ BaseDataset.__init__(self, opt) self.dir_A = os.path.join(opt.dataroot, opt.phase + 'A') # create a path '/path/to/data/trainA' self.dir_B = os.path.join(opt.dataroot, opt.phase + 'B') # create a path '/path/to/data/trainB' self.A_paths = sorted(make_dataset(self.dir_A, opt.max_dataset_size)) # load images from '/path/to/data/trainA' self.B_paths = sorted(make_dataset(self.dir_B, opt.max_dataset_size)) # load images from '/path/to/data/trainB' self.A_size = len(self.A_paths) # get the size of dataset A self.B_size = len(self.B_paths) # get the size of dataset B btoA = self.opt.direction == 'BtoA' input_nc = self.opt.output_nc if btoA else self.opt.input_nc # get the number of channels of input image output_nc = self.opt.input_nc if btoA else self.opt.output_nc # get the number of channels of output image self.transform_A = get_transform(self.opt, grayscale=(input_nc == 1)) self.transform_B = get_transform(self.opt, grayscale=(output_nc == 1))
Example #3
Source File: synthia_cityscapes.py From MADAN with MIT License | 6 votes |
def initialize(self, opt): self.opt = opt self.root = opt.dataroot self.dir_A = os.path.join(opt.dataroot, 'synthia', 'RGB') self.dir_B = os.path.join(opt.dataroot, 'cityscapes', 'leftImg8bit') self.dir_A_label = os.path.join(opt.dataroot, 'synthia', 'GT', 'parsed_LABELS') self.dir_B_label = os.path.join(opt.dataroot, 'cityscapes', 'gtFine') self.A_paths = make_dataset(self.dir_A) self.B_paths = make_dataset(self.dir_B) self.A_paths = sorted(self.A_paths) self.B_paths = sorted(self.B_paths) self.A_size = len(self.A_paths) self.B_size = len(self.B_paths) self.A_labels = make_dataset(self.dir_A_label) self.B_labels = make_cs_labels(self.dir_B_label) self.A_labels = sorted(self.A_labels) self.B_labels = sorted(self.B_labels) self.transform = get_transform(opt) self.label_transform = get_label_transform(opt)
Example #4
Source File: unaligned_triplet_dataset.py From Recycle-GAN with MIT License | 6 votes |
def initialize(self, opt): self.opt = opt self.root = opt.dataroot self.dir_A = os.path.join(opt.dataroot, opt.phase + 'A') self.dir_B = os.path.join(opt.dataroot, opt.phase + 'B') self.A_paths = make_dataset(self.dir_A) self.B_paths = make_dataset(self.dir_B) self.A_paths = sorted(self.A_paths) self.B_paths = sorted(self.B_paths) self.A_size = len(self.A_paths) self.B_size = len(self.B_paths) # self.transform = get_transform(opt) transform_list = [transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))] self.transform = transforms.Compose(transform_list)
Example #5
Source File: aligned_dataset_GAN.py From EverybodyDanceNow-Temporal-FaceGAN with MIT License | 6 votes |
def initialize(self, opt): self.opt = opt ### input A (label maps) self.label_paths = sorted(make_dataset(opt.label_root)) # self.simage_paths = sorted(make_dataset(opt.input_image_root)) ### input B (real images) if opt.isTrain: self.rimage_paths = sorted(make_dataset(opt.real_image_root)) ### instance maps if not opt.no_instance: self.dir_inst = os.path.join(opt.dataroot, opt.phase + '_inst') self.inst_paths = sorted(make_dataset(self.dir_inst)) ### load precomputed instance-wise encoded features if opt.load_features: self.dir_feat = os.path.join(opt.dataroot, opt.phase + '_feat') print('----------- loading features from %s ----------' % self.dir_feat) self.feat_paths = sorted(make_dataset(self.dir_feat)) x = 'train' if opt.isTrain else 'test' self.crop_coor = torch.load('../data/%s/%s/face_crop_coor.torch'% (opt.dataset_name, x)) self.dataset_size = len(self.label_paths)
Example #6
Source File: jnd_dataset.py From PerceptualSimilarity with BSD 2-Clause "Simplified" License | 6 votes |
def initialize(self, dataroot, load_size=64): self.root = dataroot self.load_size = load_size self.dir_p0 = os.path.join(self.root, 'p0') self.p0_paths = make_dataset(self.dir_p0) self.p0_paths = sorted(self.p0_paths) self.dir_p1 = os.path.join(self.root, 'p1') self.p1_paths = make_dataset(self.dir_p1) self.p1_paths = sorted(self.p1_paths) transform_list = [] transform_list.append(transforms.Scale(load_size)) transform_list += [transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5),(0.5, 0.5, 0.5))] self.transform = transforms.Compose(transform_list) # judgement directory self.dir_S = os.path.join(self.root, 'same') self.same_paths = make_dataset(self.dir_S,mode='np') self.same_paths = sorted(self.same_paths)
Example #7
Source File: synthesis_dataset.py From Single-Image-Reflection-Removal-Beyond-Linearity with MIT License | 6 votes |
def initialize(self, opt): self.opt = opt self.root = opt.dataroot self.loadSize = opt.loadSize self.dir_A = os.path.join(opt.dataroot, opt.phase + 'A') self.dir_B = os.path.join(opt.dataroot, opt.phase + 'B') self.A_paths = make_dataset(self.dir_A) self.B_paths = make_dataset(self.dir_B) self.A_paths = sorted(self.A_paths) self.B_paths = sorted(self.B_paths) self.A_size = len(self.A_paths) self.B_size = len(self.B_paths) if opt.phase == 'train': self.dir_C = os.path.join(opt.dataroot, opt.phase + 'C') self.C_paths = make_dataset(self.dir_C) self.C_paths = sorted(self.C_paths) self.C_size = len(self.C_paths)
Example #8
Source File: removal_dataset.py From Single-Image-Reflection-Removal-Beyond-Linearity with MIT License | 6 votes |
def initialize(self, opt): self.opt = opt self.root = opt.dataroot self.phase = opt.phase self.dir_C = os.path.join(opt.dataroot, opt.phase + 'C') if opt.phase == 'train': self.dir_A = os.path.join(opt.dataroot, opt.phase + 'A') self.dir_B = os.path.join(opt.dataroot, opt.phase + 'B') self.dir_W = os.path.join(opt.dataroot, opt.phase + 'W') self.C_paths = make_dataset(self.dir_C) if opt.phase == 'train': self.A_paths = make_dataset(self.dir_A) self.B_paths = make_dataset(self.dir_B) self.W_paths = make_dataset(self.dir_W) self.C_paths = sorted(self.C_paths) if opt.phase == 'train': self.A_paths = sorted(self.A_paths) self.B_paths = sorted(self.B_paths) self.W_paths = sorted(self.W_paths) self.C_size = len(self.C_paths)
Example #9
Source File: unaligned_dataset.py From Bayesian-CycleGAN with MIT License | 5 votes |
def initialize(self, opt): self.opt = opt self.root = opt.dataroot self.dir_A = os.path.join(opt.dataroot, opt.phase + 'A') self.dir_B = os.path.join(opt.dataroot, opt.phase + 'B') self.A_paths = make_dataset(self.dir_A) self.B_paths = make_dataset(self.dir_B) self.A_paths = sorted(self.A_paths) self.B_paths = sorted(self.B_paths) self.A_size = len(self.A_paths) self.B_size = len(self.B_paths) self.transform = get_transform(opt)
Example #10
Source File: single_dataset.py From monocularDepth-Inference with MIT License | 5 votes |
def initialize(self, opt): self.opt = opt self.root = opt.data_directory self.dir_A = os.path.join(opt.data_directory) self.A_paths = make_dataset(self.dir_A) self.A_paths = sorted(self.A_paths) self.transform = get_transform(opt)
Example #11
Source File: aligned_dataset.py From deep-learning-for-document-dewarping with MIT License | 5 votes |
def initialize(self, opt): self.opt = opt self.root = opt.dataroot ### input A (label maps) dir_A = '_A' if self.opt.label_nc == 0 else '_label' self.dir_A = os.path.join(opt.dataroot, opt.phase + dir_A) self.A_paths = sorted(make_dataset(self.dir_A)) ### input B (real images) if opt.isTrain or opt.use_encoded_image: dir_B = '_B' if self.opt.label_nc == 0 else '_img' self.dir_B = os.path.join(opt.dataroot, opt.phase + dir_B) self.B_paths = sorted(make_dataset(self.dir_B)) ### instance maps if not opt.no_instance: self.dir_inst = os.path.join(opt.dataroot, opt.phase + '_inst') self.inst_paths = sorted(make_dataset(self.dir_inst)) ### load precomputed instance-wise encoded features if opt.load_features: self.dir_feat = os.path.join(opt.dataroot, opt.phase + '_feat') print('----------- loading features from %s ----------' % self.dir_feat) self.feat_paths = sorted(make_dataset(self.dir_feat)) self.dataset_size = len(self.A_paths)
Example #12
Source File: twoafc_dataset.py From PerceptualSimilarity with BSD 2-Clause "Simplified" License | 5 votes |
def initialize(self, dataroots, load_size=64): if(not isinstance(dataroots,list)): dataroots = [dataroots,] self.roots = dataroots self.load_size = load_size # image directory self.dir_ref = [os.path.join(root, 'ref') for root in self.roots] self.ref_paths = make_dataset(self.dir_ref) self.ref_paths = sorted(self.ref_paths) self.dir_p0 = [os.path.join(root, 'p0') for root in self.roots] self.p0_paths = make_dataset(self.dir_p0) self.p0_paths = sorted(self.p0_paths) self.dir_p1 = [os.path.join(root, 'p1') for root in self.roots] self.p1_paths = make_dataset(self.dir_p1) self.p1_paths = sorted(self.p1_paths) transform_list = [] transform_list.append(transforms.Scale(load_size)) transform_list += [transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5),(0.5, 0.5, 0.5))] self.transform = transforms.Compose(transform_list) # judgement directory self.dir_J = [os.path.join(root, 'judge') for root in self.roots] self.judge_paths = make_dataset(self.dir_J,mode='np') self.judge_paths = sorted(self.judge_paths)
Example #13
Source File: aligned_dataset.py From Shift-Net_pytorch with MIT License | 5 votes |
def initialize(self, opt): self.opt = opt self.dir_A = opt.dataroot self.A_paths = sorted(make_dataset(self.dir_A)) if self.opt.offline_loading_mask: self.mask_folder = self.opt.training_mask_folder if self.opt.isTrain else self.opt.testing_mask_folder self.mask_paths = sorted(make_dataset(self.mask_folder)) assert(opt.resize_or_crop == 'resize_and_crop') transform_list = [transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))] self.transform = transforms.Compose(transform_list)
Example #14
Source File: aligned_dataset_resized.py From Shift-Net_pytorch with MIT License | 5 votes |
def initialize(self, opt): self.opt = opt self.root = opt.dataroot self.dir_A = opt.dataroot # More Flexible for users self.A_paths = sorted(make_dataset(self.dir_A)) assert(opt.resize_or_crop == 'resize_and_crop') transform_list = [transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))] self.transform = transforms.Compose(transform_list)
Example #15
Source File: single_dataset.py From Shift-Net_pytorch with MIT License | 5 votes |
def initialize(self, opt): self.opt = opt self.root = opt.dataroot self.dir_A = os.path.join(opt.dataroot) # make_dataset returns paths of all images in one folder self.A_paths = make_dataset(self.dir_A) self.A_paths = sorted(self.A_paths) transform_list = [] if opt.resize_or_crop == 'resize_and_crop': transform_list.append(transforms.Scale(opt.loadSize)) if opt.isTrain and not opt.no_flip: transform_list.append(transforms.RandomHorizontalFlip()) if opt.resize_or_crop != 'no_resize': transform_list.append(transforms.RandomCrop(opt.fineSize)) # Make it between [-1, 1], beacuse [(0-0.5)/0.5, (1-0.5)/0.5] transform_list += [transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))] self.transform = transforms.Compose(transform_list)
Example #16
Source File: unaligned_dataset.py From angularGAN with MIT License | 5 votes |
def initialize(self, opt): self.opt = opt self.root = opt.dataroot self.dir_A = os.path.join(opt.dataroot, opt.phase + 'A') self.dir_B = os.path.join(opt.dataroot, opt.phase + 'B') self.A_paths = make_dataset(self.dir_A) self.B_paths = make_dataset(self.dir_B) self.A_paths = sorted(self.A_paths) self.B_paths = sorted(self.B_paths) self.A_size = len(self.A_paths) self.B_size = len(self.B_paths) self.transform = get_transform(opt)
Example #17
Source File: unaligned_dataset.py From ToDayGAN with BSD 2-Clause "Simplified" License | 5 votes |
def __init__(self, opt): super(UnalignedDataset, self).__init__() self.opt = opt self.transform = get_transform(opt) datapath = os.path.join(opt.dataroot, opt.phase + '*') self.dirs = sorted(glob.glob(datapath)) self.paths = [sorted(make_dataset(d)) for d in self.dirs] self.sizes = [len(p) for p in self.paths]
Example #18
Source File: aligned_dataset.py From colorization-pytorch with MIT License | 5 votes |
def initialize(self, opt): self.opt = opt self.root = opt.dataroot self.dir_AB = os.path.join(opt.dataroot, opt.phase) self.AB_paths = sorted(make_dataset(self.dir_AB)) assert(opt.resize_or_crop == 'resize_and_crop')
Example #19
Source File: single_dataset.py From colorization-pytorch with MIT License | 5 votes |
def initialize(self, opt): self.opt = opt self.root = opt.dataroot self.dir_A = os.path.join(opt.dataroot) self.A_paths = make_dataset(self.dir_A) self.A_paths = sorted(self.A_paths) self.transform = get_transform(opt)
Example #20
Source File: color_dataset.py From colorization-pytorch with MIT License | 5 votes |
def initialize(self, opt): self.opt = opt self.root = opt.dataroot self.dir_A = os.path.join(opt.dataroot) self.A_paths = make_dataset(self.dir_A) self.A_paths = sorted(self.A_paths) self.transform = get_transform(opt)
Example #21
Source File: unaligned_dataset.py From ComboGAN with BSD 2-Clause "Simplified" License | 5 votes |
def __init__(self, opt): super(UnalignedDataset, self).__init__() self.opt = opt self.transform = get_transform(opt) datapath = os.path.join(opt.dataroot, opt.phase + '*') self.dirs = sorted(glob.glob(datapath)) self.paths = [sorted(make_dataset(d)) for d in self.dirs] self.sizes = [len(p) for p in self.paths]
Example #22
Source File: segmentation_dataset.py From neurips18_hierchical_image_manipulation with MIT License | 5 votes |
def initialize(self, opt): # config=DEFAULT_CONFIG): self.opt = opt self.root = opt.dataroot self.class_of_interest = [] # will define it in child self.config = { 'prob_flip': 0.0 if opt.no_flip else 0.5, 'prob_bg': opt.prob_bg, 'fineSize': opt.fineSize, 'preprocess_option': opt.resize_or_crop, 'min_box_size': opt.min_box_size, 'max_box_size': opt.max_box_size, 'img_to_obj_ratio': opt.contextMargin, 'patch_to_obj_ratio': 1.2, 'min_ctx_ratio': 1.2, 'max_ctx_ratio': 1.5} self.check_config(self.config) ### input A (label maps) dir_A = '_A' if self.opt.label_nc == 0 else '_label' self.dir_A = os.path.join(opt.dataroot, opt.phase + dir_A) self.A_paths = sorted(make_dataset(self.dir_A)) ### input B (real images) if (opt.isTrain and (not hasattr(self.opt, 'use_bbox'))) or \ (hasattr(self.opt, 'load_image') and self.opt.load_image): dir_B = '_B' if self.opt.label_nc == 0 else '_img' self.dir_B = os.path.join(opt.dataroot, opt.phase + dir_B) self.B_paths = sorted(make_dataset(self.dir_B)) ### instance maps self.dir_inst = os.path.join(opt.dataroot, opt.phase + '_inst') self.inst_paths = sorted(make_dataset(self.dir_inst)) self.dir_bbox = os.path.join(opt.dataroot, opt.phase + '_bbox') self.bbox_paths = sorted(make_dataset(self.dir_bbox)) self.dataset_size = len(self.A_paths) self.use_bbox = hasattr(self.opt, 'use_bbox') and (self.opt.use_bbox) self.load_image = hasattr(self.opt, 'load_image') and (self.opt.load_image) self.load_raw = hasattr(self.opt, 'load_raw') and (self.opt.load_raw)
Example #23
Source File: aligned_dataset.py From angularGAN with MIT License | 5 votes |
def initialize(self, opt): self.opt = opt self.root = opt.dataroot self.dir_AB = os.path.join(opt.dataroot, opt.phase) self.AB_paths = sorted(make_dataset(self.dir_AB)) assert(opt.resize_or_crop == 'resize_and_crop')
Example #24
Source File: single_dataset.py From angularGAN with MIT License | 5 votes |
def initialize(self, opt): self.opt = opt self.root = opt.dataroot self.dir_A = os.path.join(opt.dataroot) self.A_paths = make_dataset(self.dir_A) self.A_paths = sorted(self.A_paths) self.transform = get_transform(opt)
Example #25
Source File: aligned_dataset.py From 2019-CCF-BDCI-OCR-MCZJ-OCR-IdentificationIDElement with MIT License | 5 votes |
def __init__(self, opt): """Initialize this dataset class. Parameters: opt (Option class) -- stores all the experiment flags; needs to be a subclass of BaseOptions """ BaseDataset.__init__(self, opt) self.dir_AB = os.path.join(opt.dataroot, opt.phase) # get the image directory self.AB_paths = sorted(make_dataset(self.dir_AB, opt.max_dataset_size)) # get image paths assert(self.opt.load_size >= self.opt.crop_size) # crop_size should be smaller than the size of loaded image self.input_nc = self.opt.output_nc if self.opt.direction == 'BtoA' else self.opt.input_nc self.output_nc = self.opt.input_nc if self.opt.direction == 'BtoA' else self.opt.output_nc
Example #26
Source File: aligned_dataset.py From everybody_dance_now_pytorch with GNU Affero General Public License v3.0 | 5 votes |
def initialize(self, opt): self.opt = opt self.root = opt.dataroot ### input A (label maps) dir_A = '_A' if self.opt.label_nc == 0 else '_label' self.dir_A = os.path.join(opt.dataroot, opt.phase + dir_A) self.A_paths = sorted(make_dataset(self.dir_A)) ### input B (real images) if opt.isTrain: dir_B = '_B' if self.opt.label_nc == 0 else '_img' self.dir_B = os.path.join(opt.dataroot, opt.phase + dir_B) self.B_paths = sorted(make_dataset(self.dir_B)) ### instance maps if not opt.no_instance: self.dir_inst = os.path.join(opt.dataroot, opt.phase + '_inst') self.inst_paths = sorted(make_dataset(self.dir_inst)) ### load precomputed instance-wise encoded features if opt.load_features: self.dir_feat = os.path.join(opt.dataroot, opt.phase + '_feat') print('----------- loading features from %s ----------' % self.dir_feat) self.feat_paths = sorted(make_dataset(self.dir_feat)) self.dataset_size = len(self.A_paths)
Example #27
Source File: single_dataset.py From 2019-CCF-BDCI-OCR-MCZJ-OCR-IdentificationIDElement with MIT License | 5 votes |
def __init__(self, opt): """Initialize this dataset class. Parameters: opt (Option class) -- stores all the experiment flags; needs to be a subclass of BaseOptions """ BaseDataset.__init__(self, opt) self.A_paths = sorted(make_dataset(opt.dataroot, opt.max_dataset_size)) input_nc = self.opt.output_nc if self.opt.direction == 'BtoA' else self.opt.input_nc self.transform = get_transform(opt, grayscale=(input_nc == 1))
Example #28
Source File: colorization_dataset.py From 2019-CCF-BDCI-OCR-MCZJ-OCR-IdentificationIDElement with MIT License | 5 votes |
def __init__(self, opt): """Initialize this dataset class. Parameters: opt (Option class) -- stores all the experiment flags; needs to be a subclass of BaseOptions """ BaseDataset.__init__(self, opt) self.dir = os.path.join(opt.dataroot, opt.phase) self.AB_paths = sorted(make_dataset(self.dir, opt.max_dataset_size)) assert(opt.input_nc == 1 and opt.output_nc == 2 and opt.direction == 'AtoB') self.transform = get_transform(self.opt, convert=False)
Example #29
Source File: unaligned_dataset.py From Recycle-GAN with MIT License | 5 votes |
def initialize(self, opt): self.opt = opt self.root = opt.dataroot self.dir_A = os.path.join(opt.dataroot, opt.phase + 'A') self.dir_B = os.path.join(opt.dataroot, opt.phase + 'B') self.A_paths = make_dataset(self.dir_A) self.B_paths = make_dataset(self.dir_B) self.A_paths = sorted(self.A_paths) self.B_paths = sorted(self.B_paths) self.A_size = len(self.A_paths) self.B_size = len(self.B_paths) self.transform = get_transform(opt)
Example #30
Source File: single_dataset.py From EvolutionaryGAN-pytorch with MIT License | 5 votes |
def __init__(self, opt): """Initialize this dataset class. Parameters: opt (Option class) -- stores all the experiment flags; needs to be a subclass of BaseOptions """ BaseDataset.__init__(self, opt) self.A_paths = sorted(make_dataset(opt.dataroot, opt.max_dataset_size)) self.transform = get_transform(opt, grayscale=(self.opt.input_nc == 1))