Python tensorflow.python.ops.gradient_checker.compute_gradient_error() Examples
The following are 16
code examples of tensorflow.python.ops.gradient_checker.compute_gradient_error().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow.python.ops.gradient_checker
, or try the search function
.
Example #1
Source File: lstm1d_test.py From auto-alt-text-lambda-api with MIT License | 6 votes |
def testSequenceToSequenceGradient(self): with self.test_session(): size = (17, 1, 15) output_size = (17, 1, 8) inputs = constant_op.constant(_rand(*size)) outputs = lstm1d.ndlstm_base(inputs, 8, dynamic=False) variables.global_variables_initializer().run() gradients = gradients_impl.gradients(outputs, inputs) if 1: # pylint: disable=using-constant-test gradients = gradients_impl.gradients(outputs, inputs)[0].eval() self.assertEqual(gradients.shape, size) else: # TODO(tmb) tf.test.compute_gradient error is currently broken # with dynamic_rnn. Enable this test case eventually. err = gradient_checker.compute_gradient_error( inputs, size, outputs, output_size, delta=1e-4) self.assert_(not np.isnan(err)) self.assert_(err < 0.1)
Example #2
Source File: lstm1d_test.py From auto-alt-text-lambda-api with MIT License | 6 votes |
def testSequenceToSequenceGradientReverse(self): with self.test_session(): size = (17, 1, 15) output_size = (17, 1, 8) inputs = constant_op.constant(_rand(*size)) outputs = lstm1d.ndlstm_base(inputs, 8, reverse=1, dynamic=False) variables.global_variables_initializer().run() if 1: # pylint: disable=using-constant-test gradients = gradients_impl.gradients(outputs, inputs)[0].eval() self.assertEqual(gradients.shape, size) else: # TODO(tmb) tf.test.compute_gradient error is currently broken # with dynamic_rnn. Enable this test case eventually. err = gradient_checker.compute_gradient_error( inputs, size, outputs, output_size, delta=1e-4) self.assert_(not np.isnan(err)) self.assert_(err < 0.1)
Example #3
Source File: lstm1d_test.py From keras-lambda with MIT License | 6 votes |
def testSequenceToSequenceGradient(self): with self.test_session(): size = (17, 1, 15) output_size = (17, 1, 8) inputs = constant_op.constant(_rand(*size)) outputs = lstm1d.ndlstm_base(inputs, 8, dynamic=False) variables.global_variables_initializer().run() gradients = gradients_impl.gradients(outputs, inputs) if 1: # pylint: disable=using-constant-test gradients = gradients_impl.gradients(outputs, inputs)[0].eval() self.assertEqual(gradients.shape, size) else: # TODO(tmb) tf.test.compute_gradient error is currently broken # with dynamic_rnn. Enable this test case eventually. err = gradient_checker.compute_gradient_error( inputs, size, outputs, output_size, delta=1e-4) self.assert_(not np.isnan(err)) self.assert_(err < 0.1)
Example #4
Source File: lstm1d_test.py From keras-lambda with MIT License | 6 votes |
def testSequenceToSequenceGradientReverse(self): with self.test_session(): size = (17, 1, 15) output_size = (17, 1, 8) inputs = constant_op.constant(_rand(*size)) outputs = lstm1d.ndlstm_base(inputs, 8, reverse=1, dynamic=False) variables.global_variables_initializer().run() if 1: # pylint: disable=using-constant-test gradients = gradients_impl.gradients(outputs, inputs)[0].eval() self.assertEqual(gradients.shape, size) else: # TODO(tmb) tf.test.compute_gradient error is currently broken # with dynamic_rnn. Enable this test case eventually. err = gradient_checker.compute_gradient_error( inputs, size, outputs, output_size, delta=1e-4) self.assert_(not np.isnan(err)) self.assert_(err < 0.1)
Example #5
Source File: layers_test.py From tf-slim with Apache License 2.0 | 5 votes |
def testPoincareNormalizeGradient(self): x_shape = [20, 7, 3] np.random.seed(1) x_np = np.random.random_sample(x_shape).astype(np.float64) for dim in range(len(x_shape)): with self.cached_session(): x_tf = constant_op.constant(x_np, name='x') y_tf = _layers.poincare_normalize(x_tf, dim) err = gradient_checker.compute_gradient_error(x_tf, x_shape, y_tf, x_shape) print('PoinCareNormalize gradient err = %g ' % err) self.assertLess(err, 1e-4) # TODO(b/28426988): Add separate tests for non-legacy versions.
Example #6
Source File: test_render_sprites.py From auto_yolo with MIT License | 5 votes |
def _test_gradient(device): if device == "gpu" and visible_gpu(): pytest.xfail("no gpu is visible") with NumpySeed(100): with tf.device('/{}:0'.format(device)): sprites, scales, offsets, backgrounds = get_data(random_alpha=True, squash=0.99) sprites_tf = constant_op.constant(sprites) scales_tf = constant_op.constant(scales) offsets_tf = constant_op.constant(offsets) backgrounds_tf = constant_op.constant(backgrounds) images = render_sprites.render_sprites(sprites_tf, scales_tf, offsets_tf, backgrounds_tf) sess = get_session() with sess.as_default(): with tf.device(device): err = gradient_checker.compute_gradient_error( [sprites_tf, scales_tf, offsets_tf, backgrounds_tf], [sprites.shape, scales.shape, offsets.shape, backgrounds.shape], images, backgrounds.shape, [sprites, scales, offsets, backgrounds], delta=0.002) print("Jacobian error: {}".format(err)) threshold = 2e-4 assert err < threshold, "Jacobian error ({}) exceeded threshold ({})".format(err, threshold)
Example #7
Source File: maxpool_gradgrad_tests.py From tensorflow-forward-ad with MIT License | 5 votes |
def test_basics(self): tf.set_random_seed(1234) x_shape = [4, 4, 4, 5] rnd = np.random.RandomState(0) x_np = rnd.uniform(-1.0, 1.0, x_shape).astype(np.float32) # test op max_pool_grad with tf.Graph().as_default(), tf.Session() as sess: x_tf = tf.constant(x_np, name="x") y_tf1, _ = tf.nn.max_pool_with_argmax( x_tf, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding='SAME', name="y1") y_tf2 = tf.nn.max_pool( x_tf, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding='SAME', name="y2") z_tf1 = tf.reduce_sum(tf.square(y_tf1)) z_tf2 = tf.reduce_sum(tf.square(y_tf2)) dx1 = tf.gradients(z_tf1, x_tf, name='dx1')[0] dx2 = tf.gradients(z_tf2, x_tf, name='dx2')[0] err = gradient_checker.compute_gradient_error( x_tf, x_shape, dx1, x_shape, delta=1e-3, x_init_value=x_np) self.assertTrue(err < 1e-3) err = gradient_checker.compute_gradient_error( x_tf, x_shape, dx2, x_shape, delta=1e-3, x_init_value=x_np) self.assertTrue(err < 1e-3)
Example #8
Source File: icp_grad_test.py From g-tensorflow-models with Apache License 2.0 | 5 votes |
def test_grad_transform(self): with self.test_session(): cloud_source = self.small_cloud cloud_target = cloud_source + [0.05, 0, 0] ego_motion = self.identity_transform transform, unused_residual = self._run_icp(cloud_source, ego_motion, cloud_target) err = gradient_checker.compute_gradient_error(ego_motion, ego_motion.shape.as_list(), transform, transform.shape.as_list()) # Since our gradient is an approximation, it doesn't pass a numerical check. # Nonetheless, this test verifies that icp_grad computes a gradient. self.assertGreater(err, 1e-3)
Example #9
Source File: icp_grad_test.py From g-tensorflow-models with Apache License 2.0 | 5 votes |
def test_grad_transform_same_ego_motion(self): with self.test_session(): cloud_source = self.small_cloud cloud_target = cloud_source + [0.1, 0, 0] ego_motion = tf.constant([[0.1, 0.0, 0.0, 0.0, 0.0, 0.0]], dtype=tf.float32) transform, unused_residual = self._run_icp(cloud_source, ego_motion, cloud_target) err = gradient_checker.compute_gradient_error(ego_motion, ego_motion.shape.as_list(), transform, transform.shape.as_list()) # Since our gradient is an approximation, it doesn't pass a numerical check. # Nonetheless, this test verifies that icp_grad computes a gradient. self.assertGreater(err, 1e-3)
Example #10
Source File: icp_grad_test.py From g-tensorflow-models with Apache License 2.0 | 5 votes |
def test_grad_residual(self): with self.test_session(): cloud_source = self.small_cloud cloud_target = cloud_source + [0.05, 0, 0] ego_motion = self.identity_transform unused_transform, residual = self._run_icp(cloud_source, ego_motion, cloud_target) err = gradient_checker.compute_gradient_error( cloud_source, cloud_source.shape.as_list(), residual, residual.shape.as_list()) # Since our gradient is an approximation, it doesn't pass a numerical check. # Nonetheless, this test verifies that icp_grad computes a gradient. self.assertGreater(err, 1e-3)
Example #11
Source File: icp_grad_test.py From models with Apache License 2.0 | 5 votes |
def test_grad_transform(self): with self.test_session(): cloud_source = self.small_cloud cloud_target = cloud_source + [0.05, 0, 0] ego_motion = self.identity_transform transform, unused_residual = self._run_icp(cloud_source, ego_motion, cloud_target) err = gradient_checker.compute_gradient_error(ego_motion, ego_motion.shape.as_list(), transform, transform.shape.as_list()) # Since our gradient is an approximation, it doesn't pass a numerical check. # Nonetheless, this test verifies that icp_grad computes a gradient. self.assertGreater(err, 1e-3)
Example #12
Source File: icp_grad_test.py From models with Apache License 2.0 | 5 votes |
def test_grad_transform_same_ego_motion(self): with self.test_session(): cloud_source = self.small_cloud cloud_target = cloud_source + [0.1, 0, 0] ego_motion = tf.constant([[0.1, 0.0, 0.0, 0.0, 0.0, 0.0]], dtype=tf.float32) transform, unused_residual = self._run_icp(cloud_source, ego_motion, cloud_target) err = gradient_checker.compute_gradient_error(ego_motion, ego_motion.shape.as_list(), transform, transform.shape.as_list()) # Since our gradient is an approximation, it doesn't pass a numerical check. # Nonetheless, this test verifies that icp_grad computes a gradient. self.assertGreater(err, 1e-3)
Example #13
Source File: icp_grad_test.py From models with Apache License 2.0 | 5 votes |
def test_grad_residual(self): with self.test_session(): cloud_source = self.small_cloud cloud_target = cloud_source + [0.05, 0, 0] ego_motion = self.identity_transform unused_transform, residual = self._run_icp(cloud_source, ego_motion, cloud_target) err = gradient_checker.compute_gradient_error( cloud_source, cloud_source.shape.as_list(), residual, residual.shape.as_list()) # Since our gradient is an approximation, it doesn't pass a numerical check. # Nonetheless, this test verifies that icp_grad computes a gradient. self.assertGreater(err, 1e-3)
Example #14
Source File: icp_grad_test.py From multilabel-image-classification-tensorflow with MIT License | 5 votes |
def test_grad_transform(self): with self.test_session(): cloud_source = self.small_cloud cloud_target = cloud_source + [0.05, 0, 0] ego_motion = self.identity_transform transform, unused_residual = self._run_icp(cloud_source, ego_motion, cloud_target) err = gradient_checker.compute_gradient_error(ego_motion, ego_motion.shape.as_list(), transform, transform.shape.as_list()) # Since our gradient is an approximation, it doesn't pass a numerical check. # Nonetheless, this test verifies that icp_grad computes a gradient. self.assertGreater(err, 1e-3)
Example #15
Source File: icp_grad_test.py From multilabel-image-classification-tensorflow with MIT License | 5 votes |
def test_grad_transform_same_ego_motion(self): with self.test_session(): cloud_source = self.small_cloud cloud_target = cloud_source + [0.1, 0, 0] ego_motion = tf.constant([[0.1, 0.0, 0.0, 0.0, 0.0, 0.0]], dtype=tf.float32) transform, unused_residual = self._run_icp(cloud_source, ego_motion, cloud_target) err = gradient_checker.compute_gradient_error(ego_motion, ego_motion.shape.as_list(), transform, transform.shape.as_list()) # Since our gradient is an approximation, it doesn't pass a numerical check. # Nonetheless, this test verifies that icp_grad computes a gradient. self.assertGreater(err, 1e-3)
Example #16
Source File: icp_grad_test.py From multilabel-image-classification-tensorflow with MIT License | 5 votes |
def test_grad_residual(self): with self.test_session(): cloud_source = self.small_cloud cloud_target = cloud_source + [0.05, 0, 0] ego_motion = self.identity_transform unused_transform, residual = self._run_icp(cloud_source, ego_motion, cloud_target) err = gradient_checker.compute_gradient_error( cloud_source, cloud_source.shape.as_list(), residual, residual.shape.as_list()) # Since our gradient is an approximation, it doesn't pass a numerical check. # Nonetheless, this test verifies that icp_grad computes a gradient. self.assertGreater(err, 1e-3)