Python allennlp.training.metrics.BooleanAccuracy() Examples
The following are 12
code examples of allennlp.training.metrics.BooleanAccuracy().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
allennlp.training.metrics
, or try the search function
.
Example #1
Source File: boolean_accuracy_test.py From allennlp with Apache License 2.0 | 6 votes |
def test_accuracy_computation(self, device: str): accuracy = BooleanAccuracy() predictions = torch.tensor([[0, 1], [2, 3], [4, 5], [6, 7]], device=device) targets = torch.tensor([[0, 1], [2, 2], [4, 5], [7, 7]], device=device) accuracy(predictions, targets) assert accuracy.get_metric() == 2 / 4 mask = torch.ones(4, 2, device=device).bool() mask[1, 1] = 0 accuracy(predictions, targets, mask) assert accuracy.get_metric() == 5 / 8 targets[1, 1] = 3 accuracy(predictions, targets) assert accuracy.get_metric() == 8 / 12 accuracy.reset() accuracy(predictions, targets) assert accuracy.get_metric() == 3 / 4
Example #2
Source File: boolean_accuracy_test.py From magnitude with MIT License | 6 votes |
def test_accuracy_computation(self): accuracy = BooleanAccuracy() predictions = torch.Tensor([[0, 1], [2, 3], [4, 5], [6, 7]]) targets = torch.Tensor([[0, 1], [2, 2], [4, 5], [7, 7]]) accuracy(predictions, targets) assert accuracy.get_metric() == 2. / 4 mask = torch.ones(4, 2) mask[1, 1] = 0 accuracy(predictions, targets, mask) assert accuracy.get_metric() == 5. / 8 targets[1, 1] = 3 accuracy(predictions, targets) assert accuracy.get_metric() == 8. / 12 accuracy.reset() accuracy(predictions, targets) assert accuracy.get_metric() == 3. / 4
Example #3
Source File: boolean_accuracy_test.py From allennlp with Apache License 2.0 | 5 votes |
def test_skips_completely_masked_instances(self, device: str): accuracy = BooleanAccuracy() predictions = torch.tensor([[0, 1], [2, 3], [4, 5], [6, 7]], device=device) targets = torch.tensor([[0, 1], [2, 2], [4, 5], [7, 7]], device=device) mask = torch.tensor( [[False, False], [True, False], [True, True], [True, True]], device=device ) accuracy(predictions, targets, mask) # First example should be skipped, second is correct with mask, third is correct, fourth is wrong. assert accuracy.get_metric() == 2 / 3
Example #4
Source File: boolean_accuracy_test.py From allennlp with Apache License 2.0 | 5 votes |
def test_incorrect_gold_labels_shape_catches_exceptions(self, device: str): accuracy = BooleanAccuracy() predictions = torch.rand([5, 7], device=device) incorrect_shape_labels = torch.rand([5, 8], device=device) with pytest.raises(ValueError): accuracy(predictions, incorrect_shape_labels)
Example #5
Source File: boolean_accuracy_test.py From allennlp with Apache License 2.0 | 5 votes |
def test_incorrect_mask_shape_catches_exceptions(self, device: str): accuracy = BooleanAccuracy() predictions = torch.rand([5, 7], device=device) labels = torch.rand([5, 7], device=device) incorrect_shape_mask = torch.randint(0, 2, [5, 8], device=device).bool() with pytest.raises(ValueError): accuracy(predictions, labels, incorrect_shape_mask)
Example #6
Source File: boolean_accuracy_test.py From allennlp with Apache License 2.0 | 5 votes |
def test_does_not_divide_by_zero_with_no_count(self, device: str): accuracy = BooleanAccuracy() assert accuracy.get_metric() == pytest.approx(0.0)
Example #7
Source File: slqa_h.py From SLQA with Apache License 2.0 | 5 votes |
def __init__(self, vocab: Vocabulary, text_field_embedder: TextFieldEmbedder, phrase_layer: Seq2SeqEncoder, projected_layer: Seq2SeqEncoder, flow_layer: Seq2SeqEncoder, contextual_passage: Seq2SeqEncoder, contextual_question: Seq2SeqEncoder, dropout: float = 0.2, regularizer: Optional[RegularizerApplicator] = None, initializer: InitializerApplicator = InitializerApplicator(), ): super(MultiGranularityHierarchicalAttentionFusionNetworks, self).__init__(vocab, regularizer) self._text_field_embedder = text_field_embedder self._phrase_layer = phrase_layer self._encoding_dim = self._phrase_layer.get_output_dim() self.projected_layer = torch.nn.Linear(self._encoding_dim + 1024, self._encoding_dim) self.fuse = FusionLayer(self._encoding_dim) self.projected_lstm = projected_layer self.flow = flow_layer self.contextual_layer_p = contextual_passage self.contextual_layer_q = contextual_question self.linear_self_align = torch.nn.Linear(self._encoding_dim, 1) self.bilinear_layer_s = BilinearSeqAtt(self._encoding_dim, self._encoding_dim) self.bilinear_layer_e = BilinearSeqAtt(self._encoding_dim, self._encoding_dim) self.yesno_predictor = torch.nn.Linear(self._encoding_dim, 3) self.relu = torch.nn.ReLU() self._max_span_length = 30 self._span_start_accuracy = CategoricalAccuracy() self._span_end_accuracy = CategoricalAccuracy() self._span_accuracy = BooleanAccuracy() self._squad_metrics = SquadEmAndF1() self._span_yesno_accuracy = CategoricalAccuracy() self._official_f1 = Average() self._variational_dropout = InputVariationalDropout(dropout) self._loss = torch.nn.CrossEntropyLoss() initializer(self)
Example #8
Source File: rnet.py From R-net with MIT License | 5 votes |
def __init__(self, vocab: Vocabulary, text_field_embedder: TextFieldEmbedder, question_encoder: Seq2SeqEncoder, passage_encoder: Seq2SeqEncoder, pair_encoder: AttentionEncoder, self_encoder: AttentionEncoder, output_layer: QAOutputLayer, initializer: InitializerApplicator = InitializerApplicator(), regularizer: Optional[RegularizerApplicator] = None, share_encoder: bool = False): super().__init__(vocab, regularizer) self.text_field_embedder = text_field_embedder self.question_encoder = question_encoder self.passage_encoder = passage_encoder self.pair_encoder = pair_encoder self.self_encoder = self_encoder self.output_layer = output_layer self._span_start_accuracy = CategoricalAccuracy() self._span_end_accuracy = CategoricalAccuracy() self._span_accuracy = BooleanAccuracy() self._squad_metrics = SquadEmAndF1() self.share_encoder = share_encoder self.loss = torch.nn.CrossEntropyLoss() initializer(self)
Example #9
Source File: bidaf.py From magnitude with MIT License | 4 votes |
def __init__(self, vocab , text_field_embedder , num_highway_layers , phrase_layer , similarity_function , modeling_layer , span_end_encoder , dropout = 0.2, mask_lstms = True, initializer = InitializerApplicator(), regularizer = None) : super(BidirectionalAttentionFlow, self).__init__(vocab, regularizer) self._text_field_embedder = text_field_embedder self._highway_layer = TimeDistributed(Highway(text_field_embedder.get_output_dim(), num_highway_layers)) self._phrase_layer = phrase_layer self._matrix_attention = LegacyMatrixAttention(similarity_function) self._modeling_layer = modeling_layer self._span_end_encoder = span_end_encoder encoding_dim = phrase_layer.get_output_dim() modeling_dim = modeling_layer.get_output_dim() span_start_input_dim = encoding_dim * 4 + modeling_dim self._span_start_predictor = TimeDistributed(torch.nn.Linear(span_start_input_dim, 1)) span_end_encoding_dim = span_end_encoder.get_output_dim() span_end_input_dim = encoding_dim * 4 + span_end_encoding_dim self._span_end_predictor = TimeDistributed(torch.nn.Linear(span_end_input_dim, 1)) # Bidaf has lots of layer dimensions which need to match up - these aren't necessarily # obvious from the configuration files, so we check here. check_dimensions_match(modeling_layer.get_input_dim(), 4 * encoding_dim, u"modeling layer input dim", u"4 * encoding dim") check_dimensions_match(text_field_embedder.get_output_dim(), phrase_layer.get_input_dim(), u"text field embedder output dim", u"phrase layer input dim") check_dimensions_match(span_end_encoder.get_input_dim(), 4 * encoding_dim + 3 * modeling_dim, u"span end encoder input dim", u"4 * encoding dim + 3 * modeling dim") self._span_start_accuracy = CategoricalAccuracy() self._span_end_accuracy = CategoricalAccuracy() self._span_accuracy = BooleanAccuracy() self._squad_metrics = SquadEmAndF1() if dropout > 0: self._dropout = torch.nn.Dropout(p=dropout) else: self._dropout = lambda x: x self._mask_lstms = mask_lstms initializer(self)
Example #10
Source File: bidaf_pair2vec.py From pair2vec with Apache License 2.0 | 4 votes |
def __init__(self, vocab: Vocabulary, text_field_embedder: TextFieldEmbedder, phrase_layer: Seq2SeqEncoder, residual_encoder: Seq2SeqEncoder, span_start_encoder: Seq2SeqEncoder, span_end_encoder: Seq2SeqEncoder, initializer: InitializerApplicator, dropout: float = 0.2, pair2vec_dropout: float = 0.15, max_span_length: int = 30, pair2vec_model_file: str = None, pair2vec_config_file: str = None ) -> None: super().__init__(vocab) self._max_span_length = max_span_length self._text_field_embedder = text_field_embedder self._phrase_layer = phrase_layer self._encoding_dim = phrase_layer.get_output_dim() self.pair2vec = pair2vec_util.get_pair2vec(pair2vec_config_file, pair2vec_model_file) self._pair2vec_dropout = torch.nn.Dropout(pair2vec_dropout) self._matrix_attention = LinearMatrixAttention(self._encoding_dim, self._encoding_dim, 'x,y,x*y') # atten_dim = self._encoding_dim * 4 + 600 if ablation_type == 'attn_over_rels' else self._encoding_dim * 4 atten_dim = self._encoding_dim * 4 + 600 self._merge_atten = TimeDistributed(torch.nn.Linear(atten_dim, self._encoding_dim)) self._residual_encoder = residual_encoder self._self_attention = LinearMatrixAttention(self._encoding_dim, self._encoding_dim, 'x,y,x*y') self._merge_self_attention = TimeDistributed(torch.nn.Linear(self._encoding_dim * 3, self._encoding_dim)) self._span_start_encoder = span_start_encoder self._span_end_encoder = span_end_encoder self._span_start_predictor = TimeDistributed(torch.nn.Linear(self._encoding_dim, 1)) self._span_end_predictor = TimeDistributed(torch.nn.Linear(self._encoding_dim, 1)) self._squad_metrics = SquadEmAndF1() initializer(self) self._span_start_accuracy = CategoricalAccuracy() self._span_end_accuracy = CategoricalAccuracy() self._official_em = Average() self._official_f1 = Average() self._span_accuracy = BooleanAccuracy() self._variational_dropout = InputVariationalDropout(dropout)
Example #11
Source File: seperate_slqa.py From SLQA with Apache License 2.0 | 4 votes |
def __init__(self, vocab: Vocabulary, elmo_embedder: TextFieldEmbedder, tokens_embedder: TextFieldEmbedder, features_embedder: TextFieldEmbedder, phrase_layer: Seq2SeqEncoder, projected_layer: Seq2SeqEncoder, contextual_passage: Seq2SeqEncoder, contextual_question: Seq2SeqEncoder, dropout: float = 0.2, regularizer: Optional[RegularizerApplicator] = None, initializer: InitializerApplicator = InitializerApplicator(), ): super(MultiGranularityHierarchicalAttentionFusionNetworks, self).__init__(vocab, regularizer) self.elmo_embedder = elmo_embedder self.tokens_embedder = tokens_embedder self.features_embedder = features_embedder self._phrase_layer = phrase_layer self._encoding_dim = self._phrase_layer.get_output_dim() self.projected_layer = torch.nn.Linear(self._encoding_dim + 1024, self._encoding_dim) self.fuse_p = FusionLayer(self._encoding_dim) self.fuse_q = FusionLayer(self._encoding_dim) self.fuse_s = FusionLayer(self._encoding_dim) self.projected_lstm = projected_layer self.contextual_layer_p = contextual_passage self.contextual_layer_q = contextual_question self.linear_self_align = torch.nn.Linear(self._encoding_dim, 1) # self._self_attention = LinearMatrixAttention(self._encoding_dim, self._encoding_dim, 'x,y,x*y') self._self_attention = BilinearMatrixAttention(self._encoding_dim, self._encoding_dim) self.bilinear_layer_s = BilinearSeqAtt(self._encoding_dim, self._encoding_dim) self.bilinear_layer_e = BilinearSeqAtt(self._encoding_dim, self._encoding_dim) self.yesno_predictor = FeedForward(self._encoding_dim, self._encoding_dim, 3) self.relu = torch.nn.ReLU() self._max_span_length = 30 self._span_start_accuracy = CategoricalAccuracy() self._span_end_accuracy = CategoricalAccuracy() self._span_accuracy = BooleanAccuracy() self._squad_metrics = SquadEmAndF1() self._span_yesno_accuracy = CategoricalAccuracy() self._official_f1 = Average() self._variational_dropout = InputVariationalDropout(dropout) self._loss = torch.nn.CrossEntropyLoss() initializer(self)
Example #12
Source File: slqa.py From SLQA with Apache License 2.0 | 4 votes |
def __init__(self, vocab: Vocabulary, text_field_embedder: TextFieldEmbedder, phrase_layer: Seq2SeqEncoder, projected_layer: Seq2SeqEncoder, contextual_passage: Seq2SeqEncoder, contextual_question: Seq2SeqEncoder, dropout: float = 0.2, regularizer: Optional[RegularizerApplicator] = None, initializer: InitializerApplicator = InitializerApplicator(), ): super(MultiGranularityHierarchicalAttentionFusionNetworks, self).__init__(vocab, regularizer) self._text_field_embedder = text_field_embedder self._phrase_layer = phrase_layer self._encoding_dim = self._phrase_layer.get_output_dim() self.projected_layer = torch.nn.Linear(self._encoding_dim + 1024, self._encoding_dim) self.fuse_p = FusionLayer(self._encoding_dim) self.fuse_q = FusionLayer(self._encoding_dim) self.fuse_s = FusionLayer(self._encoding_dim) self.projected_lstm = projected_layer self.contextual_layer_p = contextual_passage self.contextual_layer_q = contextual_question self.linear_self_align = torch.nn.Linear(self._encoding_dim, 1) # self.bilinear_self_align = BilinearSelfAlign(self._encoding_dim) # self._self_attention = LinearMatrixAttention(self._encoding_dim, self._encoding_dim, 'x,y,x*y') self._self_attention = BilinearMatrixAttention(self._encoding_dim, self._encoding_dim) self.bilinear_layer_s = BilinearSeqAtt(self._encoding_dim, self._encoding_dim) self.bilinear_layer_e = BilinearSeqAtt(self._encoding_dim, self._encoding_dim) self.yesno_predictor = torch.nn.Linear(self._encoding_dim, 3) self.relu = torch.nn.ReLU() self._max_span_length = 30 self._span_start_accuracy = CategoricalAccuracy() self._span_end_accuracy = CategoricalAccuracy() self._span_accuracy = BooleanAccuracy() self._squad_metrics = SquadEmAndF1() self._span_yesno_accuracy = CategoricalAccuracy() self._official_f1 = Average() self._variational_dropout = InputVariationalDropout(dropout) self._loss = torch.nn.CrossEntropyLoss() initializer(self)