Python object_detection.models.ssd_inception_v3_feature_extractor.SSDInceptionV3FeatureExtractor() Examples
The following are 16
code examples of object_detection.models.ssd_inception_v3_feature_extractor.SSDInceptionV3FeatureExtractor().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
object_detection.models.ssd_inception_v3_feature_extractor
, or try the search function
.
Example #1
Source File: ssd_inception_v3_feature_extractor_test.py From vehicle_counting_tensorflow with MIT License | 6 votes |
def _create_feature_extractor(self, depth_multiplier, pad_to_multiple, is_training=True): """Constructs a SsdInceptionV3FeatureExtractor. Args: depth_multiplier: float depth multiplier for feature extractor pad_to_multiple: the nearest multiple to zero pad the input height and width dimensions to. is_training: whether the network is in training mode. Returns: an ssd_inception_v3_feature_extractor.SsdInceptionV3FeatureExtractor. """ min_depth = 32 return ssd_inception_v3_feature_extractor.SSDInceptionV3FeatureExtractor( is_training, depth_multiplier, min_depth, pad_to_multiple, self.conv_hyperparams_fn, override_base_feature_extractor_hyperparams=True)
Example #2
Source File: ssd_inception_v3_feature_extractor_test.py From ros_people_object_detection_tensorflow with Apache License 2.0 | 6 votes |
def _create_feature_extractor(self, depth_multiplier, pad_to_multiple, is_training=True, batch_norm_trainable=True): """Constructs a SsdInceptionV3FeatureExtractor. Args: depth_multiplier: float depth multiplier for feature extractor pad_to_multiple: the nearest multiple to zero pad the input height and width dimensions to. is_training: whether the network is in training mode. batch_norm_trainable: Whether to update batch norm parameters during training or not Returns: an ssd_inception_v3_feature_extractor.SsdInceptionV3FeatureExtractor. """ min_depth = 32 conv_hyperparams = {} return ssd_inception_v3_feature_extractor.SSDInceptionV3FeatureExtractor( is_training, depth_multiplier, min_depth, pad_to_multiple, conv_hyperparams, batch_norm_trainable)
Example #3
Source File: ssd_inception_v3_feature_extractor_test.py From Person-Detection-and-Tracking with MIT License | 6 votes |
def _create_feature_extractor(self, depth_multiplier, pad_to_multiple, is_training=True): """Constructs a SsdInceptionV3FeatureExtractor. Args: depth_multiplier: float depth multiplier for feature extractor pad_to_multiple: the nearest multiple to zero pad the input height and width dimensions to. is_training: whether the network is in training mode. Returns: an ssd_inception_v3_feature_extractor.SsdInceptionV3FeatureExtractor. """ min_depth = 32 return ssd_inception_v3_feature_extractor.SSDInceptionV3FeatureExtractor( is_training, depth_multiplier, min_depth, pad_to_multiple, self.conv_hyperparams_fn, override_base_feature_extractor_hyperparams=True)
Example #4
Source File: ssd_inception_v3_feature_extractor_test.py From yolo_v2 with Apache License 2.0 | 6 votes |
def _create_feature_extractor(self, depth_multiplier, pad_to_multiple, is_training=True, batch_norm_trainable=True): """Constructs a SsdInceptionV3FeatureExtractor. Args: depth_multiplier: float depth multiplier for feature extractor pad_to_multiple: the nearest multiple to zero pad the input height and width dimensions to. is_training: whether the network is in training mode. batch_norm_trainable: Whether to update batch norm parameters during training or not Returns: an ssd_inception_v3_feature_extractor.SsdInceptionV3FeatureExtractor. """ min_depth = 32 conv_hyperparams = {} return ssd_inception_v3_feature_extractor.SSDInceptionV3FeatureExtractor( is_training, depth_multiplier, min_depth, pad_to_multiple, conv_hyperparams, batch_norm_trainable)
Example #5
Source File: ssd_inception_v3_feature_extractor_test.py From Traffic-Rule-Violation-Detection-System with MIT License | 6 votes |
def _create_feature_extractor(self, depth_multiplier, pad_to_multiple, is_training=True, batch_norm_trainable=True): """Constructs a SsdInceptionV3FeatureExtractor. Args: depth_multiplier: float depth multiplier for feature extractor pad_to_multiple: the nearest multiple to zero pad the input height and width dimensions to. is_training: whether the network is in training mode. batch_norm_trainable: Whether to update batch norm parameters during training or not Returns: an ssd_inception_v3_feature_extractor.SsdInceptionV3FeatureExtractor. """ min_depth = 32 conv_hyperparams = {} return ssd_inception_v3_feature_extractor.SSDInceptionV3FeatureExtractor( is_training, depth_multiplier, min_depth, pad_to_multiple, conv_hyperparams, batch_norm_trainable)
Example #6
Source File: ssd_inception_v3_feature_extractor_test.py From Gun-Detector with Apache License 2.0 | 6 votes |
def _create_feature_extractor(self, depth_multiplier, pad_to_multiple, is_training=True): """Constructs a SsdInceptionV3FeatureExtractor. Args: depth_multiplier: float depth multiplier for feature extractor pad_to_multiple: the nearest multiple to zero pad the input height and width dimensions to. is_training: whether the network is in training mode. Returns: an ssd_inception_v3_feature_extractor.SsdInceptionV3FeatureExtractor. """ min_depth = 32 return ssd_inception_v3_feature_extractor.SSDInceptionV3FeatureExtractor( is_training, depth_multiplier, min_depth, pad_to_multiple, self.conv_hyperparams_fn, override_base_feature_extractor_hyperparams=True)
Example #7
Source File: ssd_inception_v3_feature_extractor_test.py From ros_tensorflow with Apache License 2.0 | 6 votes |
def _create_feature_extractor(self, depth_multiplier, pad_to_multiple, is_training=True): """Constructs a SsdInceptionV3FeatureExtractor. Args: depth_multiplier: float depth multiplier for feature extractor pad_to_multiple: the nearest multiple to zero pad the input height and width dimensions to. is_training: whether the network is in training mode. Returns: an ssd_inception_v3_feature_extractor.SsdInceptionV3FeatureExtractor. """ min_depth = 32 return ssd_inception_v3_feature_extractor.SSDInceptionV3FeatureExtractor( is_training, depth_multiplier, min_depth, pad_to_multiple, self.conv_hyperparams_fn, override_base_feature_extractor_hyperparams=True)
Example #8
Source File: ssd_inception_v3_feature_extractor_test.py From BMW-TensorFlow-Training-GUI with Apache License 2.0 | 6 votes |
def _create_feature_extractor(self, depth_multiplier, pad_to_multiple, is_training=True): """Constructs a SsdInceptionV3FeatureExtractor. Args: depth_multiplier: float depth multiplier for feature extractor pad_to_multiple: the nearest multiple to zero pad the input height and width dimensions to. is_training: whether the network is in training mode. Returns: an ssd_inception_v3_feature_extractor.SsdInceptionV3FeatureExtractor. """ min_depth = 32 return ssd_inception_v3_feature_extractor.SSDInceptionV3FeatureExtractor( is_training, depth_multiplier, min_depth, pad_to_multiple, self.conv_hyperparams_fn, override_base_feature_extractor_hyperparams=True)
Example #9
Source File: ssd_inception_v3_feature_extractor_test.py From Elphas with Apache License 2.0 | 6 votes |
def _create_feature_extractor(self, depth_multiplier, pad_to_multiple, is_training=True, batch_norm_trainable=True): """Constructs a SsdInceptionV3FeatureExtractor. Args: depth_multiplier: float depth multiplier for feature extractor pad_to_multiple: the nearest multiple to zero pad the input height and width dimensions to. is_training: whether the network is in training mode. batch_norm_trainable: Whether to update batch norm parameters during training or not Returns: an ssd_inception_v3_feature_extractor.SsdInceptionV3FeatureExtractor. """ min_depth = 32 conv_hyperparams = {} return ssd_inception_v3_feature_extractor.SSDInceptionV3FeatureExtractor( is_training, depth_multiplier, min_depth, pad_to_multiple, conv_hyperparams, batch_norm_trainable)
Example #10
Source File: ssd_inception_v3_feature_extractor_test.py From object_detection_with_tensorflow with MIT License | 6 votes |
def _create_feature_extractor(self, depth_multiplier, pad_to_multiple, is_training=True, batch_norm_trainable=True): """Constructs a SsdInceptionV3FeatureExtractor. Args: depth_multiplier: float depth multiplier for feature extractor pad_to_multiple: the nearest multiple to zero pad the input height and width dimensions to. is_training: whether the network is in training mode. batch_norm_trainable: Whether to update batch norm parameters during training or not Returns: an ssd_inception_v3_feature_extractor.SsdInceptionV3FeatureExtractor. """ min_depth = 32 conv_hyperparams = {} return ssd_inception_v3_feature_extractor.SSDInceptionV3FeatureExtractor( is_training, depth_multiplier, min_depth, pad_to_multiple, conv_hyperparams, batch_norm_trainable)
Example #11
Source File: ssd_inception_v3_feature_extractor_test.py From object_detection_with_tensorflow with MIT License | 6 votes |
def _create_feature_extractor(self, depth_multiplier, pad_to_multiple, is_training=True, batch_norm_trainable=True): """Constructs a SsdInceptionV3FeatureExtractor. Args: depth_multiplier: float depth multiplier for feature extractor pad_to_multiple: the nearest multiple to zero pad the input height and width dimensions to. is_training: whether the network is in training mode. batch_norm_trainable: Whether to update batch norm parameters during training or not Returns: an ssd_inception_v3_feature_extractor.SsdInceptionV3FeatureExtractor. """ min_depth = 32 conv_hyperparams = {} return ssd_inception_v3_feature_extractor.SSDInceptionV3FeatureExtractor( is_training, depth_multiplier, min_depth, pad_to_multiple, conv_hyperparams, batch_norm_trainable)
Example #12
Source File: ssd_inception_v3_feature_extractor_test.py From MAX-Object-Detector with Apache License 2.0 | 6 votes |
def _create_feature_extractor(self, depth_multiplier, pad_to_multiple, is_training=True): """Constructs a SsdInceptionV3FeatureExtractor. Args: depth_multiplier: float depth multiplier for feature extractor pad_to_multiple: the nearest multiple to zero pad the input height and width dimensions to. is_training: whether the network is in training mode. Returns: an ssd_inception_v3_feature_extractor.SsdInceptionV3FeatureExtractor. """ min_depth = 32 return ssd_inception_v3_feature_extractor.SSDInceptionV3FeatureExtractor( is_training, depth_multiplier, min_depth, pad_to_multiple, self.conv_hyperparams_fn, override_base_feature_extractor_hyperparams=True)
Example #13
Source File: ssd_inception_v3_feature_extractor_test.py From g-tensorflow-models with Apache License 2.0 | 6 votes |
def _create_feature_extractor(self, depth_multiplier, pad_to_multiple, is_training=True): """Constructs a SsdInceptionV3FeatureExtractor. Args: depth_multiplier: float depth multiplier for feature extractor pad_to_multiple: the nearest multiple to zero pad the input height and width dimensions to. is_training: whether the network is in training mode. Returns: an ssd_inception_v3_feature_extractor.SsdInceptionV3FeatureExtractor. """ min_depth = 32 return ssd_inception_v3_feature_extractor.SSDInceptionV3FeatureExtractor( is_training, depth_multiplier, min_depth, pad_to_multiple, self.conv_hyperparams_fn, override_base_feature_extractor_hyperparams=True)
Example #14
Source File: ssd_inception_v3_feature_extractor_test.py From multilabel-image-classification-tensorflow with MIT License | 6 votes |
def _create_feature_extractor(self, depth_multiplier, pad_to_multiple, is_training=True): """Constructs a SsdInceptionV3FeatureExtractor. Args: depth_multiplier: float depth multiplier for feature extractor pad_to_multiple: the nearest multiple to zero pad the input height and width dimensions to. is_training: whether the network is in training mode. Returns: an ssd_inception_v3_feature_extractor.SsdInceptionV3FeatureExtractor. """ min_depth = 32 return ssd_inception_v3_feature_extractor.SSDInceptionV3FeatureExtractor( is_training, depth_multiplier, min_depth, pad_to_multiple, self.conv_hyperparams_fn, override_base_feature_extractor_hyperparams=True)
Example #15
Source File: ssd_inception_v3_feature_extractor_test.py From Live-feed-object-device-identification-using-Tensorflow-and-OpenCV with Apache License 2.0 | 5 votes |
def _create_feature_extractor(self, depth_multiplier, pad_to_multiple, use_explicit_padding=False, num_layers=6, is_training=True): """Constructs a SsdInceptionV3FeatureExtractor. Args: depth_multiplier: float depth multiplier for feature extractor pad_to_multiple: the nearest multiple to zero pad the input height and width dimensions to. use_explicit_padding: Use 'VALID' padding for convolutions, but prepad inputs so that the output dimensions are the same as if 'SAME' padding were used. num_layers: number of SSD layers. is_training: whether the network is in training mode. Returns: an ssd_inception_v3_feature_extractor.SsdInceptionV3FeatureExtractor. """ min_depth = 32 return ssd_inception_v3_feature_extractor.SSDInceptionV3FeatureExtractor( is_training, depth_multiplier, min_depth, pad_to_multiple, self.conv_hyperparams_fn, num_layers=num_layers, override_base_feature_extractor_hyperparams=True)
Example #16
Source File: ssd_inception_v3_feature_extractor_tf1_test.py From models with Apache License 2.0 | 5 votes |
def _create_feature_extractor(self, depth_multiplier, pad_to_multiple, use_explicit_padding=False, num_layers=6, is_training=True): """Constructs a SsdInceptionV3FeatureExtractor. Args: depth_multiplier: float depth multiplier for feature extractor pad_to_multiple: the nearest multiple to zero pad the input height and width dimensions to. use_explicit_padding: Use 'VALID' padding for convolutions, but prepad inputs so that the output dimensions are the same as if 'SAME' padding were used. num_layers: number of SSD layers. is_training: whether the network is in training mode. Returns: an ssd_inception_v3_feature_extractor.SsdInceptionV3FeatureExtractor. """ min_depth = 32 return ssd_inception_v3_feature_extractor.SSDInceptionV3FeatureExtractor( is_training, depth_multiplier, min_depth, pad_to_multiple, self.conv_hyperparams_fn, num_layers=num_layers, override_base_feature_extractor_hyperparams=True)