Python utils.utils.create_logger() Examples
The following are 6
code examples of utils.utils.create_logger().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
utils.utils
, or try the search function
.
Example #1
Source File: test.py From AutoGAN with MIT License | 4 votes |
def main(): args = cfg.parse_args() torch.cuda.manual_seed(args.random_seed) assert args.exp_name assert args.load_path.endswith('.pth') assert os.path.exists(args.load_path) args.path_helper = set_log_dir('logs_eval', args.exp_name) logger = create_logger(args.path_helper['log_path'], phase='test') # set tf env _init_inception() inception_path = check_or_download_inception(None) create_inception_graph(inception_path) # import network gen_net = eval('models.'+args.gen_model+'.Generator')(args=args).cuda() # fid stat if args.dataset.lower() == 'cifar10': fid_stat = 'fid_stat/fid_stats_cifar10_train.npz' elif args.dataset.lower() == 'stl10': fid_stat = 'fid_stat/stl10_train_unlabeled_fid_stats_48.npz' else: raise NotImplementedError(f'no fid stat for {args.dataset.lower()}') assert os.path.exists(fid_stat) # initial fixed_z = torch.cuda.FloatTensor(np.random.normal(0, 1, (25, args.latent_dim))) # set writer logger.info(f'=> resuming from {args.load_path}') checkpoint_file = args.load_path assert os.path.exists(checkpoint_file) checkpoint = torch.load(checkpoint_file) if 'avg_gen_state_dict' in checkpoint: gen_net.load_state_dict(checkpoint['avg_gen_state_dict']) epoch = checkpoint['epoch'] logger.info(f'=> loaded checkpoint {checkpoint_file} (epoch {epoch})') else: gen_net.load_state_dict(checkpoint) logger.info(f'=> loaded checkpoint {checkpoint_file}') logger.info(args) writer_dict = { 'writer': SummaryWriter(args.path_helper['log_path']), 'valid_global_steps': 0, } inception_score, fid_score = validate(args, fixed_z, fid_stat, gen_net, writer_dict, clean_dir=False) logger.info(f'Inception score: {inception_score}, FID score: {fid_score}.')
Example #2
Source File: dist_train.py From HigherHRNet-Human-Pose-Estimation with MIT License | 4 votes |
def main(): args = parse_args() update_config(cfg, args) cfg.defrost() cfg.RANK = args.rank cfg.freeze() logger, final_output_dir, tb_log_dir = create_logger( cfg, args.cfg, 'train' ) logger.info(pprint.pformat(args)) logger.info(cfg) if args.gpu is not None: warnings.warn('You have chosen a specific GPU. This will completely ' 'disable data parallelism.') if args.dist_url == "env://" and args.world_size == -1: args.world_size = int(os.environ["WORLD_SIZE"]) args.distributed = args.world_size > 1 or cfg.MULTIPROCESSING_DISTRIBUTED ngpus_per_node = torch.cuda.device_count() if cfg.MULTIPROCESSING_DISTRIBUTED: # Since we have ngpus_per_node processes per node, the total world_size # needs to be adjusted accordingly args.world_size = ngpus_per_node * args.world_size # Use torch.multiprocessing.spawn to launch distributed processes: the # main_worker process function mp.spawn( main_worker, nprocs=ngpus_per_node, args=(ngpus_per_node, args, final_output_dir, tb_log_dir) ) else: # Simply call main_worker function main_worker( ','.join([str(i) for i in cfg.GPUS]), ngpus_per_node, args, final_output_dir, tb_log_dir )
Example #3
Source File: valid.py From HRNet-Image-Classification with MIT License | 4 votes |
def main(): args = parse_args() logger, final_output_dir, tb_log_dir = create_logger( config, args.cfg, 'valid') logger.info(pprint.pformat(args)) logger.info(pprint.pformat(config)) # cudnn related setting cudnn.benchmark = config.CUDNN.BENCHMARK torch.backends.cudnn.deterministic = config.CUDNN.DETERMINISTIC torch.backends.cudnn.enabled = config.CUDNN.ENABLED model = eval('models.'+config.MODEL.NAME+'.get_cls_net')( config) dump_input = torch.rand( (1, 3, config.MODEL.IMAGE_SIZE[1], config.MODEL.IMAGE_SIZE[0]) ) logger.info(get_model_summary(model, dump_input)) if config.TEST.MODEL_FILE: logger.info('=> loading model from {}'.format(config.TEST.MODEL_FILE)) model.load_state_dict(torch.load(config.TEST.MODEL_FILE)) else: model_state_file = os.path.join(final_output_dir, 'final_state.pth.tar') logger.info('=> loading model from {}'.format(model_state_file)) model.load_state_dict(torch.load(model_state_file)) gpus = list(config.GPUS) model = torch.nn.DataParallel(model, device_ids=gpus).cuda() # define loss function (criterion) and optimizer criterion = torch.nn.CrossEntropyLoss().cuda() # Data loading code valdir = os.path.join(config.DATASET.ROOT, config.DATASET.TEST_SET) normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) valid_loader = torch.utils.data.DataLoader( datasets.ImageFolder(valdir, transforms.Compose([ transforms.Resize(int(config.MODEL.IMAGE_SIZE[0] / 0.875)), transforms.CenterCrop(config.MODEL.IMAGE_SIZE[0]), transforms.ToTensor(), normalize, ])), batch_size=config.TEST.BATCH_SIZE_PER_GPU*len(gpus), shuffle=False, num_workers=config.WORKERS, pin_memory=True ) # evaluate on validation set validate(config, valid_loader, model, criterion, final_output_dir, tb_log_dir, None)
Example #4
Source File: valid.py From multiview-human-pose-estimation-pytorch with MIT License | 4 votes |
def main(): args = parse_args() reset_config(config, args) logger, final_output_dir, tb_log_dir = create_logger( config, args.cfg, 'valid') logger.info(pprint.pformat(args)) logger.info(pprint.pformat(config)) # cudnn related setting cudnn.benchmark = config.CUDNN.BENCHMARK torch.backends.cudnn.deterministic = config.CUDNN.DETERMINISTIC torch.backends.cudnn.enabled = config.CUDNN.ENABLED backbone_model = eval('models.' + config.BACKBONE_MODEL + '.get_pose_net')( config, is_train=False) model = eval('models.' + config.MODEL + '.get_multiview_pose_net')( backbone_model, config) if config.TEST.MODEL_FILE: logger.info('=> loading model from {}'.format(config.TEST.MODEL_FILE)) model.load_state_dict(torch.load(config.TEST.MODEL_FILE)) else: model_path = 'model_best.pth.tar' if config.TEST.STATE == 'best' else 'final_state.pth.tar' model_state_file = os.path.join(final_output_dir, model_path) logger.info('=> loading model from {}'.format(model_state_file)) model.load_state_dict(torch.load(model_state_file)) gpus = [int(i) for i in config.GPUS.split(',')] model = torch.nn.DataParallel(model, device_ids=gpus).cuda() # define loss function (criterion) and optimizer criterion = JointsMSELoss( use_target_weight=config.LOSS.USE_TARGET_WEIGHT).cuda() # Data loading code normalize = transforms.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) valid_dataset = eval('dataset.' + config.DATASET.TEST_DATASET)( config, config.DATASET.TEST_SUBSET, False, transforms.Compose([ transforms.ToTensor(), normalize, ])) valid_loader = torch.utils.data.DataLoader( valid_dataset, batch_size=config.TEST.BATCH_SIZE * len(gpus), shuffle=False, num_workers=config.WORKERS, pin_memory=True) # evaluate on validation set validate(config, valid_loader, valid_dataset, model, criterion, final_output_dir, tb_log_dir)
Example #5
Source File: estimate.py From multiview-human-pose-estimation-pytorch with MIT License | 4 votes |
def main(): args = parse_args() logger, final_output_dir, tb_log_dir = create_logger( config, args.cfg, 'test3d') prediction_path = os.path.join(final_output_dir, config.TEST.HEATMAP_LOCATION_FILE) test_dataset = eval('dataset.' + config.DATASET.TEST_DATASET)( config, config.DATASET.TEST_SUBSET, False) all_heatmaps = h5py.File(prediction_path)['heatmaps'] pairwise_file = config.PICT_STRUCT.PAIRWISE_FILE with open(pairwise_file, 'rb') as f: pairwise = pickle.load(f)['pairwise_constrain'] cnt = 0 grouping = test_dataset.grouping mpjpes = [] for items in grouping: heatmaps = [] boxes = [] poses = [] cameras = [] for idx in items: datum = test_dataset.db[idx] camera = datum['camera'] cameras.append(camera) poses.append( camera_to_world_frame(datum['joints_3d_camera'], camera['R'], camera['T'])) box = {} box['scale'] = np.array(datum['scale']) box['center'] = np.array(datum['center']) boxes.append(box) heatmaps.append(all_heatmaps[cnt]) cnt += 1 heatmaps = np.array(heatmaps) # This demo uses GT root locations and limb length; but can be replaced by statistics grid_center = poses[0][0] body = HumanBody() limb_length = compute_limb_length(body, poses[0]) prediction = rpsm(cameras, heatmaps, boxes, grid_center, limb_length, pairwise, config) mpjpe = np.mean(np.sqrt(np.sum((prediction - poses[0])**2, axis=1))) mpjpes.append(mpjpe) print(np.mean(mpjpes))
Example #6
Source File: valid.py From human-pose-estimation.pytorch with MIT License | 4 votes |
def main(): args = parse_args() reset_config(config, args) logger, final_output_dir, tb_log_dir = create_logger( config, args.cfg, 'valid') logger.info(pprint.pformat(args)) logger.info(pprint.pformat(config)) # cudnn related setting cudnn.benchmark = config.CUDNN.BENCHMARK torch.backends.cudnn.deterministic = config.CUDNN.DETERMINISTIC torch.backends.cudnn.enabled = config.CUDNN.ENABLED model = eval('models.'+config.MODEL.NAME+'.get_pose_net')( config, is_train=False ) if config.TEST.MODEL_FILE: logger.info('=> loading model from {}'.format(config.TEST.MODEL_FILE)) model.load_state_dict(torch.load(config.TEST.MODEL_FILE)) else: model_state_file = os.path.join(final_output_dir, 'final_state.pth.tar') logger.info('=> loading model from {}'.format(model_state_file)) model.load_state_dict(torch.load(model_state_file)) gpus = [int(i) for i in config.GPUS.split(',')] model = torch.nn.DataParallel(model, device_ids=gpus).cuda() # define loss function (criterion) and optimizer criterion = JointsMSELoss( use_target_weight=config.LOSS.USE_TARGET_WEIGHT ).cuda() # Data loading code normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) valid_dataset = eval('dataset.'+config.DATASET.DATASET)( config, config.DATASET.ROOT, config.DATASET.TEST_SET, False, transforms.Compose([ transforms.ToTensor(), normalize, ]) ) valid_loader = torch.utils.data.DataLoader( valid_dataset, batch_size=config.TEST.BATCH_SIZE*len(gpus), shuffle=False, num_workers=config.WORKERS, pin_memory=True ) # evaluate on validation set validate(config, valid_loader, valid_dataset, model, criterion, final_output_dir, tb_log_dir)