Python absl.flags.adopt_module_key_flags() Examples
The following are 30
code examples of absl.flags.adopt_module_key_flags().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
absl.flags
, or try the search function
.
Example #1
Source File: core.py From ml-on-gcp with Apache License 2.0 | 6 votes |
def register_key_flags_in_core(f): """Defines a function in core.py, and registers its key flags. absl uses the location of a flags.declare_key_flag() to determine the context in which a flag is key. By making all declares in core, this allows model main functions to call flags.adopt_module_key_flags() on core and correctly chain key flags. Args: f: The function to be wrapped Returns: The "core-defined" version of the input function. """ def core_fn(*args, **kwargs): key_flags = f(*args, **kwargs) [flags.declare_key_flag(fl) for fl in key_flags] # pylint: disable=expression-not-assigned return core_fn
Example #2
Source File: movielens_main.py From g-tensorflow-models with Apache License 2.0 | 6 votes |
def define_movie_flags(): """Define flags for movie dataset training.""" wide_deep_run_loop.define_wide_deep_flags() flags.DEFINE_enum( name="dataset", default=movielens.ML_1M, enum_values=movielens.DATASETS, case_sensitive=False, help=flags_core.help_wrap("Dataset to be trained and evaluated.")) flags.adopt_module_key_flags(wide_deep_run_loop) flags_core.set_defaults(data_dir="/tmp/movielens-data/", model_dir='/tmp/movie_model', model_type="deep", train_epochs=50, epochs_between_evals=5, inter_op_parallelism_threads=0, intra_op_parallelism_threads=0, batch_size=256) @flags.validator("stop_threshold", message="stop_threshold not supported for movielens model") def _no_stop(stop_threshold): return stop_threshold is None
Example #3
Source File: wide_deep_run_loop.py From g-tensorflow-models with Apache License 2.0 | 6 votes |
def define_wide_deep_flags(): """Add supervised learning flags, as well as wide-deep model type.""" flags_core.define_base() flags_core.define_benchmark() flags_core.define_performance( num_parallel_calls=False, inter_op=True, intra_op=True, synthetic_data=False, max_train_steps=False, dtype=False, all_reduce_alg=False) flags.adopt_module_key_flags(flags_core) flags.DEFINE_enum( name="model_type", short_name="mt", default="wide_deep", enum_values=['wide', 'deep', 'wide_deep'], help="Select model topology.") flags.DEFINE_boolean( name="download_if_missing", default=True, help=flags_core.help_wrap( "Download data to data_dir if it is not already present."))
Example #4
Source File: core.py From g-tensorflow-models with Apache License 2.0 | 6 votes |
def register_key_flags_in_core(f): """Defines a function in core.py, and registers its key flags. absl uses the location of a flags.declare_key_flag() to determine the context in which a flag is key. By making all declares in core, this allows model main functions to call flags.adopt_module_key_flags() on core and correctly chain key flags. Args: f: The function to be wrapped Returns: The "core-defined" version of the input function. """ def core_fn(*args, **kwargs): key_flags = f(*args, **kwargs) [flags.declare_key_flag(fl) for fl in key_flags] # pylint: disable=expression-not-assigned return core_fn
Example #5
Source File: core.py From models with Apache License 2.0 | 6 votes |
def register_key_flags_in_core(f): """Defines a function in core.py, and registers its key flags. absl uses the location of a flags.declare_key_flag() to determine the context in which a flag is key. By making all declares in core, this allows model main functions to call flags.adopt_module_key_flags() on core and correctly chain key flags. Args: f: The function to be wrapped Returns: The "core-defined" version of the input function. """ def core_fn(*args, **kwargs): key_flags = f(*args, **kwargs) [flags.declare_key_flag(fl) for fl in key_flags] # pylint: disable=expression-not-assigned return core_fn
Example #6
Source File: core.py From models with Apache License 2.0 | 6 votes |
def register_key_flags_in_core(f): """Defines a function in core.py, and registers its key flags. absl uses the location of a flags.declare_key_flag() to determine the context in which a flag is key. By making all declares in core, this allows model main functions to call flags.adopt_module_key_flags() on core and correctly chain key flags. Args: f: The function to be wrapped Returns: The "core-defined" version of the input function. """ def core_fn(*args, **kwargs): key_flags = f(*args, **kwargs) [flags.declare_key_flag(fl) for fl in key_flags] # pylint: disable=expression-not-assigned return core_fn
Example #7
Source File: core.py From models with Apache License 2.0 | 6 votes |
def register_key_flags_in_core(f): """Defines a function in core.py, and registers its key flags. absl uses the location of a flags.declare_key_flag() to determine the context in which a flag is key. By making all declares in core, this allows model main functions to call flags.adopt_module_key_flags() on core and correctly chain key flags. Args: f: The function to be wrapped Returns: The "core-defined" version of the input function. """ def core_fn(*args, **kwargs): key_flags = f(*args, **kwargs) [flags.declare_key_flag(fl) for fl in key_flags] # pylint: disable=expression-not-assigned return core_fn
Example #8
Source File: core.py From models with Apache License 2.0 | 6 votes |
def register_key_flags_in_core(f): """Defines a function in core.py, and registers its key flags. absl uses the location of a flags.declare_key_flag() to determine the context in which a flag is key. By making all declares in core, this allows model main functions to call flags.adopt_module_key_flags() on core and correctly chain key flags. Args: f: The function to be wrapped Returns: The "core-defined" version of the input function. """ def core_fn(*args, **kwargs): key_flags = f(*args, **kwargs) [flags.declare_key_flag(fl) for fl in key_flags] # pylint: disable=expression-not-assigned return core_fn
Example #9
Source File: movielens_main.py From multilabel-image-classification-tensorflow with MIT License | 6 votes |
def define_movie_flags(): """Define flags for movie dataset training.""" wide_deep_run_loop.define_wide_deep_flags() flags.DEFINE_enum( name="dataset", default=movielens.ML_1M, enum_values=movielens.DATASETS, case_sensitive=False, help=flags_core.help_wrap("Dataset to be trained and evaluated.")) flags.adopt_module_key_flags(wide_deep_run_loop) flags_core.set_defaults(data_dir="/tmp/movielens-data/", model_dir='/tmp/movie_model', model_type="deep", train_epochs=50, epochs_between_evals=5, inter_op_parallelism_threads=0, intra_op_parallelism_threads=0, batch_size=256) @flags.validator("stop_threshold", message="stop_threshold not supported for movielens model") def _no_stop(stop_threshold): return stop_threshold is None
Example #10
Source File: wide_deep_run_loop.py From Live-feed-object-device-identification-using-Tensorflow-and-OpenCV with Apache License 2.0 | 6 votes |
def define_wide_deep_flags(): """Add supervised learning flags, as well as wide-deep model type.""" flags_core.define_base(clean=True, train_epochs=True, epochs_between_evals=True) flags_core.define_benchmark() flags_core.define_performance( num_parallel_calls=False, inter_op=True, intra_op=True, synthetic_data=False, max_train_steps=False, dtype=False, all_reduce_alg=False) flags.adopt_module_key_flags(flags_core) flags.DEFINE_enum( name="model_type", short_name="mt", default="wide_deep", enum_values=['wide', 'deep', 'wide_deep'], help="Select model topology.") flags.DEFINE_boolean( name="download_if_missing", default=True, help=flags_core.help_wrap( "Download data to data_dir if it is not already present."))
Example #11
Source File: core.py From ml-on-gcp with Apache License 2.0 | 6 votes |
def register_key_flags_in_core(f): """Defines a function in core.py, and registers its key flags. absl uses the location of a flags.declare_key_flag() to determine the context in which a flag is key. By making all declares in core, this allows model main functions to call flags.adopt_module_key_flags() on core and correctly chain key flags. Args: f: The function to be wrapped Returns: The "core-defined" version of the input function. """ def core_fn(*args, **kwargs): key_flags = f(*args, **kwargs) [flags.declare_key_flag(fl) for fl in key_flags] # pylint: disable=expression-not-assigned return core_fn
Example #12
Source File: wide_deep_run_loop.py From multilabel-image-classification-tensorflow with MIT License | 6 votes |
def define_wide_deep_flags(): """Add supervised learning flags, as well as wide-deep model type.""" flags_core.define_base() flags_core.define_benchmark() flags_core.define_performance( num_parallel_calls=False, inter_op=True, intra_op=True, synthetic_data=False, max_train_steps=False, dtype=False, all_reduce_alg=False) flags.adopt_module_key_flags(flags_core) flags.DEFINE_enum( name="model_type", short_name="mt", default="wide_deep", enum_values=['wide', 'deep', 'wide_deep'], help="Select model topology.") flags.DEFINE_boolean( name="download_if_missing", default=True, help=flags_core.help_wrap( "Download data to data_dir if it is not already present."))
Example #13
Source File: core.py From ml-on-gcp with Apache License 2.0 | 6 votes |
def register_key_flags_in_core(f): """Defines a function in core.py, and registers its key flags. absl uses the location of a flags.declare_key_flag() to determine the context in which a flag is key. By making all declares in core, this allows model main functions to call flags.adopt_module_key_flags() on core and correctly chain key flags. Args: f: The function to be wrapped Returns: The "core-defined" version of the input function. """ def core_fn(*args, **kwargs): key_flags = f(*args, **kwargs) [flags.declare_key_flag(fl) for fl in key_flags] # pylint: disable=expression-not-assigned return core_fn
Example #14
Source File: core.py From multilabel-image-classification-tensorflow with MIT License | 6 votes |
def register_key_flags_in_core(f): """Defines a function in core.py, and registers its key flags. absl uses the location of a flags.declare_key_flag() to determine the context in which a flag is key. By making all declares in core, this allows model main functions to call flags.adopt_module_key_flags() on core and correctly chain key flags. Args: f: The function to be wrapped Returns: The "core-defined" version of the input function. """ def core_fn(*args, **kwargs): key_flags = f(*args, **kwargs) [flags.declare_key_flag(fl) for fl in key_flags] # pylint: disable=expression-not-assigned return core_fn
Example #15
Source File: movielens_main.py From Live-feed-object-device-identification-using-Tensorflow-and-OpenCV with Apache License 2.0 | 6 votes |
def define_movie_flags(): """Define flags for movie dataset training.""" wide_deep_run_loop.define_wide_deep_flags() flags.DEFINE_enum( name="dataset", default=movielens.ML_1M, enum_values=movielens.DATASETS, case_sensitive=False, help=flags_core.help_wrap("Dataset to be trained and evaluated.")) flags.adopt_module_key_flags(wide_deep_run_loop) flags_core.set_defaults(data_dir="/tmp/movielens-data/", model_dir='/tmp/movie_model', model_type="deep", train_epochs=50, epochs_between_evals=5, inter_op_parallelism_threads=0, intra_op_parallelism_threads=0, batch_size=256) @flags.validator("stop_threshold", message="stop_threshold not supported for movielens model") def _no_stop(stop_threshold): return stop_threshold is None
Example #16
Source File: core.py From Live-feed-object-device-identification-using-Tensorflow-and-OpenCV with Apache License 2.0 | 6 votes |
def register_key_flags_in_core(f): """Defines a function in core.py, and registers its key flags. absl uses the location of a flags.declare_key_flag() to determine the context in which a flag is key. By making all declares in core, this allows model main functions to call flags.adopt_module_key_flags() on core and correctly chain key flags. Args: f: The function to be wrapped Returns: The "core-defined" version of the input function. """ def core_fn(*args, **kwargs): key_flags = f(*args, **kwargs) [flags.declare_key_flag(fl) for fl in key_flags] # pylint: disable=expression-not-assigned return core_fn
Example #17
Source File: core.py From nsfw with Apache License 2.0 | 6 votes |
def register_key_flags_in_core(f): """Defines a function in core.py, and registers its key flags. absl uses the location of a flags.declare_key_flag() to determine the context in which a flag is key. By making all declares in core, this allows model main functions to call flags.adopt_module_key_flags() on core and correctly chain key flags. Args: f: The function to be wrapped Returns: The "core-defined" version of the input function. """ def core_fn(*args, **kwargs): key_flags = f(*args, **kwargs) [flags.declare_key_flag(fl) for fl in key_flags] # pylint: disable=expression-not-assigned return core_fn
Example #18
Source File: core.py From models with Apache License 2.0 | 6 votes |
def register_key_flags_in_core(f): """Defines a function in core.py, and registers its key flags. absl uses the location of a flags.declare_key_flag() to determine the context in which a flag is key. By making all declares in core, this allows model main functions to call flags.adopt_module_key_flags() on core and correctly chain key flags. Args: f: The function to be wrapped Returns: The "core-defined" version of the input function. """ def core_fn(*args, **kwargs): key_flags = f(*args, **kwargs) [flags.declare_key_flag(fl) for fl in key_flags] # pylint: disable=expression-not-assigned return core_fn
Example #19
Source File: imagenet_main.py From g-tensorflow-models with Apache License 2.0 | 5 votes |
def define_imagenet_flags(): resnet_run_loop.define_resnet_flags( resnet_size_choices=['18', '34', '50', '101', '152', '200']) flags.adopt_module_key_flags(resnet_run_loop) flags_core.set_defaults(train_epochs=90)
Example #20
Source File: census_main.py From multilabel-image-classification-tensorflow with MIT License | 5 votes |
def define_census_flags(): wide_deep_run_loop.define_wide_deep_flags() flags.adopt_module_key_flags(wide_deep_run_loop) flags_core.set_defaults(data_dir='/tmp/census_data', model_dir='/tmp/census_model', train_epochs=40, epochs_between_evals=2, inter_op_parallelism_threads=0, intra_op_parallelism_threads=0, batch_size=40)
Example #21
Source File: mnist.py From multilabel-image-classification-tensorflow with MIT License | 5 votes |
def define_mnist_flags(): flags_core.define_base() flags_core.define_performance(num_parallel_calls=False) flags_core.define_image() flags.adopt_module_key_flags(flags_core) flags_core.set_defaults(data_dir='/tmp/mnist_data', model_dir='/tmp/mnist_model', batch_size=100, train_epochs=40)
Example #22
Source File: cifar10_main.py From multilabel-image-classification-tensorflow with MIT License | 5 votes |
def define_cifar_flags(): resnet_run_loop.define_resnet_flags() flags.adopt_module_key_flags(resnet_run_loop) flags_core.set_defaults(data_dir='/tmp/cifar10_data', model_dir='/tmp/cifar10_model', resnet_size='56', train_epochs=182, epochs_between_evals=10, batch_size=128, image_bytes_as_serving_input=False)
Example #23
Source File: train_higgs.py From Live-feed-object-device-identification-using-Tensorflow-and-OpenCV with Apache License 2.0 | 5 votes |
def define_train_higgs_flags(): """Add tree related flags as well as training/eval configuration.""" flags_core.define_base(clean=False, stop_threshold=False, batch_size=False, num_gpu=False) flags_core.define_benchmark() flags.adopt_module_key_flags(flags_core) flags.DEFINE_integer( name="train_start", default=0, help=help_wrap("Start index of train examples within the data.")) flags.DEFINE_integer( name="train_count", default=1000000, help=help_wrap("Number of train examples within the data.")) flags.DEFINE_integer( name="eval_start", default=10000000, help=help_wrap("Start index of eval examples within the data.")) flags.DEFINE_integer( name="eval_count", default=1000000, help=help_wrap("Number of eval examples within the data.")) flags.DEFINE_integer( "n_trees", default=100, help=help_wrap("Number of trees to build.")) flags.DEFINE_integer( "max_depth", default=6, help=help_wrap("Maximum depths of each tree.")) flags.DEFINE_float( "learning_rate", default=0.1, help=help_wrap("The learning rate.")) flags_core.set_defaults(data_dir="/tmp/higgs_data", model_dir="/tmp/higgs_model")
Example #24
Source File: imagenet_main.py From multilabel-image-classification-tensorflow with MIT License | 5 votes |
def define_imagenet_flags(): resnet_run_loop.define_resnet_flags( resnet_size_choices=['18', '34', '50', '101', '152', '200']) flags.adopt_module_key_flags(resnet_run_loop) flags_core.set_defaults(train_epochs=90)
Example #25
Source File: train_higgs.py From multilabel-image-classification-tensorflow with MIT License | 5 votes |
def define_train_higgs_flags(): """Add tree related flags as well as training/eval configuration.""" flags_core.define_base(clean=False, stop_threshold=False, batch_size=False, num_gpu=False) flags_core.define_benchmark() flags.adopt_module_key_flags(flags_core) flags.DEFINE_integer( name="train_start", default=0, help=help_wrap("Start index of train examples within the data.")) flags.DEFINE_integer( name="train_count", default=1000000, help=help_wrap("Number of train examples within the data.")) flags.DEFINE_integer( name="eval_start", default=10000000, help=help_wrap("Start index of eval examples within the data.")) flags.DEFINE_integer( name="eval_count", default=1000000, help=help_wrap("Number of eval examples within the data.")) flags.DEFINE_integer( "n_trees", default=100, help=help_wrap("Number of trees to build.")) flags.DEFINE_integer( "max_depth", default=6, help=help_wrap("Maximum depths of each tree.")) flags.DEFINE_float( "learning_rate", default=0.1, help=help_wrap("The learning rate.")) flags_core.set_defaults(data_dir="/tmp/higgs_data", model_dir="/tmp/higgs_model")
Example #26
Source File: train_higgs.py From g-tensorflow-models with Apache License 2.0 | 5 votes |
def define_train_higgs_flags(): """Add tree related flags as well as training/eval configuration.""" flags_core.define_base(clean=False, stop_threshold=False, batch_size=False, num_gpu=False) flags_core.define_benchmark() flags.adopt_module_key_flags(flags_core) flags.DEFINE_integer( name="train_start", default=0, help=help_wrap("Start index of train examples within the data.")) flags.DEFINE_integer( name="train_count", default=1000000, help=help_wrap("Number of train examples within the data.")) flags.DEFINE_integer( name="eval_start", default=10000000, help=help_wrap("Start index of eval examples within the data.")) flags.DEFINE_integer( name="eval_count", default=1000000, help=help_wrap("Number of eval examples within the data.")) flags.DEFINE_integer( "n_trees", default=100, help=help_wrap("Number of trees to build.")) flags.DEFINE_integer( "max_depth", default=6, help=help_wrap("Maximum depths of each tree.")) flags.DEFINE_float( "learning_rate", default=0.1, help=help_wrap("The learning rate.")) flags_core.set_defaults(data_dir="/tmp/higgs_data", model_dir="/tmp/higgs_model")
Example #27
Source File: resnet_imagenet_main.py From Live-feed-object-device-identification-using-Tensorflow-and-OpenCV with Apache License 2.0 | 5 votes |
def define_imagenet_keras_flags(): common.define_keras_flags() flags_core.set_defaults(train_epochs=90) flags.adopt_module_key_flags(common)
Example #28
Source File: imagenet_main.py From Live-feed-object-device-identification-using-Tensorflow-and-OpenCV with Apache License 2.0 | 5 votes |
def define_imagenet_flags(): resnet_run_loop.define_resnet_flags( resnet_size_choices=['18', '34', '50', '101', '152', '200'], dynamic_loss_scale=True, fp16_implementation=True) flags.adopt_module_key_flags(resnet_run_loop) flags_core.set_defaults(train_epochs=90)
Example #29
Source File: cifar10_main.py From Live-feed-object-device-identification-using-Tensorflow-and-OpenCV with Apache License 2.0 | 5 votes |
def define_cifar_flags(): resnet_run_loop.define_resnet_flags() flags.adopt_module_key_flags(resnet_run_loop) flags_core.set_defaults(data_dir='/tmp/cifar10_data/cifar-10-batches-bin', model_dir='/tmp/cifar10_model', resnet_size='56', train_epochs=182, epochs_between_evals=10, batch_size=128, image_bytes_as_serving_input=False)
Example #30
Source File: mnist.py From models with Apache License 2.0 | 5 votes |
def define_mnist_flags(): flags_core.define_base() flags_core.define_image() flags.adopt_module_key_flags(flags_core) flags_core.set_defaults(data_dir='/tmp/mnist_data', model_dir='/tmp/mnist_model', batch_size=100, train_epochs=40)