Python model.get_model() Examples
The following are 24
code examples of model.get_model().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
model
, or try the search function
.
Example #1
Source File: train.py From bcnn with MIT License | 6 votes |
def train(weights_path, epochs, batch_size, initial_epoch, kl_start_epoch, kl_alpha_increase_per_epoch): """Trains a model.""" print ('loading data...') # Loads or creates training data. input_shape, train, valid, train_targets, valid_targets = get_train_data() print ('getting model...') # Loads or creates model. model, checkpoint_path, kl_alpha = get_model(input_shape, scale_factor=len(train)/batch_size, weights_path=weights_path) # Sets callbacks. checkpointer = ModelCheckpoint(checkpoint_path, verbose=1, save_weights_only=True, save_best_only=True) scheduler = LearningRateScheduler(schedule) annealer = Callback() if kl_alpha is None else AnnealingCallback(kl_alpha, kl_start_epoch, kl_alpha_increase_per_epoch) print ('fitting model...') # Trains model. model.fit(train, train_targets, batch_size, epochs, initial_epoch=initial_epoch, callbacks=[checkpointer, scheduler, annealer], validation_data=(valid, valid_targets))
Example #2
Source File: test.py From bcnn with MIT License | 6 votes |
def test(weights_path, batch_size): """Tests a model.""" try: # Loads or creates test data. input_shape, test, test_targets, \ test_coords, orig_test_shape = get_test_data() except FileNotFoundError as e: print(e) print("Could not find test files in data_dir. " "Did you specify the correct orig_test_data_dir?") return # Loads or creates model. model, checkpoint_path, _ = get_model(input_shape, scale_factor=len(test)/batch_size, weights_path=weights_path) # Predicts on test data and saves results. predict(model, test, test_targets, test_coords, orig_test_shape, input_shape) plots()
Example #3
Source File: model_eval.py From BetaElephant with MIT License | 5 votes |
def __init__(self, model_folder, checkpoint_file): sys.path.append(model_folder) from model import get_model from dataset import load_data self.dataset = load_data('validation') self.sess = tf.InteractiveSession() self.model = get_model('policy') saver = tf.train.Saver() saver.restore(self.sess, checkpoint_file)
Example #4
Source File: main.py From crypto_predictor with MIT License | 5 votes |
def get_coin_decisions(df, backtest=True): model = get_model(df) df_list, backtests = get_dataset_df(df, backtest) total_decisions_df = pd.DataFrame() total_prices_df = pd.DataFrame() for coin, coin_df in backtests.items(): X, y = get_dataset(coin_df) final_df = get_backtest_action(X, y, model) for col in ['date', 'price']: final_df[col] = coin_df[col] coin_decision_df = final_df[['date', 'final_decision']] coin_prices_df = final_df[['date', 'price']] coin_decision_df.columns = ['date', coin] coin_prices_df.columns = ['date', coin] if total_decisions_df.empty: total_decisions_df = coin_decision_df else: total_decisions_df = pd.merge(total_decisions_df, coin_decision_df) if total_prices_df.empty: total_prices_df = coin_prices_df else: total_prices_df = pd.merge(total_prices_df, coin_prices_df) df_list = [] for df in [total_decisions_df, total_prices_df]: df.set_index('date', inplace=True) df_list.append(df.T.reset_index()) return df_list
Example #5
Source File: test_model.py From noise2noise with MIT License | 5 votes |
def main(): args = get_args() image_dir = args.image_dir weight_file = args.weight_file val_noise_model = get_noise_model(args.test_noise_model) model = get_model(args.model) model.load_weights(weight_file) if args.output_dir: output_dir = Path(args.output_dir) output_dir.mkdir(parents=True, exist_ok=True) image_paths = list(Path(image_dir).glob("*.*")) for image_path in image_paths: image = cv2.imread(str(image_path)) h, w, _ = image.shape image = image[:(h // 16) * 16, :(w // 16) * 16] # for stride (maximum 16) h, w, _ = image.shape out_image = np.zeros((h, w * 3, 3), dtype=np.uint8) noise_image = val_noise_model(image) pred = model.predict(np.expand_dims(noise_image, 0)) denoised_image = get_image(pred[0]) out_image[:, :w] = image out_image[:, w:w * 2] = noise_image out_image[:, w * 2:] = denoised_image if args.output_dir: cv2.imwrite(str(output_dir.joinpath(image_path.name))[:-4] + ".png", out_image) else: cv2.imshow("result", out_image) key = cv2.waitKey(-1) # "q": quit if key == 113: return 0
Example #6
Source File: train.py From inversecooking with MIT License | 5 votes |
def merge_models(args, model, ingr_vocab_size, instrs_vocab_size): load_args = pickle.load(open(os.path.join(args.save_dir, args.project_name, args.transfer_from, 'checkpoints/args.pkl'), 'rb')) model_ingrs = get_model(load_args, ingr_vocab_size, instrs_vocab_size) model_path = os.path.join(args.save_dir, args.project_name, args.transfer_from, 'checkpoints', 'modelbest.ckpt') # Load the trained model parameters model_ingrs.load_state_dict(torch.load(model_path, map_location=map_loc)) model.ingredient_decoder = model_ingrs.ingredient_decoder args.transf_layers_ingrs = load_args.transf_layers_ingrs args.n_att_ingrs = load_args.n_att_ingrs return args, model
Example #7
Source File: test_model.py From n2n-watermark-remove with MIT License | 5 votes |
def main(): args = get_args() image_dir = args.image_dir weight_file = args.weight_file val_noise_model = get_noise_model(args.test_noise_model) model = get_model(args.model) model.load_weights(weight_file) if args.output_dir: output_dir = Path(args.output_dir) output_dir.mkdir(parents=True, exist_ok=True) image_paths = list(Path(image_dir).glob("*.*")) for image_path in image_paths: image = cv2.imread(str(image_path)) h, w, _ = image.shape #image = image[:(h // 16) * 16, :(w // 16) * 16] # for stride (maximum 16) h, w, _ = image.shape out_image = np.zeros((h, w * 1, 3), dtype=np.uint8) noise_image = val_noise_model(image) pred = model.predict(np.expand_dims(noise_image, 0)) denoised_image = get_image(pred[0]) out_image[:, :w] = denoised_image if args.output_dir: cv2.imwrite(str(output_dir.joinpath(image_path.name))[:-4] + ".png", out_image) else: cv2.imshow("result", out_image) key = cv2.waitKey(-1) # "q": quit if key == 113: return 0
Example #8
Source File: export_policy.py From BetaElephant with MIT License | 5 votes |
def export_input_graph(model_folder): sys.path.append(model_folder) from model import get_model with tf.Session() as sess: model = get_model('policy') saver = tf.train.Saver() tf.train.write_graph(sess.graph_def, model_folder, 'input_graph.pb', as_text=True)
Example #9
Source File: trainer.py From BetaElephant with MIT License | 4 votes |
def train(args): device = args.device load_path = args.load_path # load data train_data = load_data('train') val_data = load_data('validation') # load model with tf.device('/gpu:%d' % device): model = get_model('train') # trainer init optimizer = Config.optimizer train_step = optimizer.minimize(model.loss) # init session and server sess = tf.InteractiveSession() saver = tf.train.Saver() if load_path==None: sess.run(tf.initialize_all_variables()) else: saver.restore(sess, load_path) print("Model restored from %s" % load_path) # accuracy pred = tf.reshape(model.pred, [-1, 9*10*16]) label = tf.reshape(model.label, [-1, 9*10*16]) correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(label,1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) logging.basicConfig(filename='log.txt', level=logging.DEBUG) # train steps for i in range(Config.n_epoch): # training step batch_data, batch_label = train_data.next_batch(Config.minibatch_size) input_dict = {model.label:batch_label} for var, data in zip(model.inputs, batch_data): input_dict[var]=data #from IPython import embed;embed() sess.run(train_step, feed_dict=input_dict) # evalue step if (i+1)%Config.evalue_point == 0: batch_data, batch_label = val_data.next_batch(Config.minibatch_size) val_dict = {model.label:batch_label} for var, data in zip(model.inputs, batch_data): val_dict[var]=data score = accuracy.eval(feed_dict=val_dict) print("epoch %d, accuracy is %.2f" % (i,score)) logging.info("epoch %d, accuracy is %.2f" % (i,score)) # save step if (i+1)%Config.check_point == 0: save_path = saver.save(sess, "%s/epoch-%d" %(Config.save_path, i)) print("Model saved in file: %s" % save_path) logging.info("Model saved in file: %s" % save_path)
Example #10
Source File: trainer.py From BetaElephant with MIT License | 4 votes |
def train(args): device = args.device load_path = args.load_path # load data train_data = load_data('train') val_data = load_data('validation') # load model with tf.device('/gpu:%d' % device): model = get_model('train') # trainer init optimizer = Config.optimizer train_step = optimizer.minimize(model.loss) # init session and server sess = tf.InteractiveSession() saver = tf.train.Saver() if load_path==None: sess.run(tf.initialize_all_variables()) else: saver.restore(sess, load_path) print("Model restored from %s" % load_path) # accuracy pred = tf.reshape(model.pred, [-1, 9*10*16]) label = tf.reshape(model.label, [-1, 9*10*16]) correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(label,1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) logging.basicConfig(filename='log.txt', level=logging.DEBUG) # train steps for i in range(Config.n_epoch): # training step batch_data, batch_label = train_data.next_batch(Config.minibatch_size) input_dict = {model.label:batch_label} for var, data in zip(model.inputs, batch_data): input_dict[var]=data #from IPython import embed;embed() sess.run(train_step, feed_dict=input_dict) # evalue step if (i+1)%Config.evalue_point == 0: batch_data, batch_label = val_data.next_batch(Config.minibatch_size) val_dict = {model.label:batch_label} for var, data in zip(model.inputs, batch_data): val_dict[var]=data score = accuracy.eval(feed_dict=val_dict) print("epoch %d, accuracy is %.2f" % (i,score)) logging.info("epoch %d, accuracy is %.2f" % (i,score)) # save step if (i+1)%Config.check_point == 0: save_path = saver.save(sess, "%s/epoch-%d" %(Config.save_path, i)) print("Model saved in file: %s" % save_path) logging.info("Model saved in file: %s" % save_path)
Example #11
Source File: init_tool.py From pytorch-worker with MIT License | 4 votes |
def init_all(config, gpu_list, checkpoint, mode, *args, **params): result = {} logger.info("Begin to initialize dataset and formatter...") if mode == "train": init_formatter(config, ["train", "valid"], *args, **params) result["train_dataset"], result["valid_dataset"] = init_dataset(config, *args, **params) else: init_formatter(config, ["test"], *args, **params) result["test_dataset"] = init_test_dataset(config, *args, **params) logger.info("Begin to initialize models...") model = get_model(config.get("model", "model_name"))(config, gpu_list, *args, **params) optimizer = init_optimizer(model, config, *args, **params) trained_epoch = 0 global_step = 0 if len(gpu_list) > 0: model = model.cuda() try: model.init_multi_gpu(gpu_list, config, *args, **params) except Exception as e: logger.warning("No init_multi_gpu implemented in the model, use single gpu instead.") try: parameters = torch.load(checkpoint) model.load_state_dict(parameters["model"]) if mode == "train": trained_epoch = parameters["trained_epoch"] if config.get("train", "optimizer") == parameters["optimizer_name"]: optimizer.load_state_dict(parameters["optimizer"]) else: logger.warning("Optimizer changed, do not load parameters of optimizer.") if "global_step" in parameters: global_step = parameters["global_step"] except Exception as e: information = "Cannot load checkpoint file with error %s" % str(e) if mode == "test": logger.error(information) raise e else: logger.warning(information) result["model"] = model if mode == "train": result["optimizer"] = optimizer result["trained_epoch"] = trained_epoch result["output_function"] = init_output_function(config) result["global_step"] = global_step logger.info("Initialize done.") return result
Example #12
Source File: train.py From noise2noise with MIT License | 4 votes |
def main(): args = get_args() image_dir = args.image_dir test_dir = args.test_dir image_size = args.image_size batch_size = args.batch_size nb_epochs = args.nb_epochs lr = args.lr steps = args.steps loss_type = args.loss output_path = Path(__file__).resolve().parent.joinpath(args.output_path) model = get_model(args.model) if args.weight is not None: model.load_weights(args.weight) opt = Adam(lr=lr) callbacks = [] if loss_type == "l0": l0 = L0Loss() callbacks.append(UpdateAnnealingParameter(l0.gamma, nb_epochs, verbose=1)) loss_type = l0() model.compile(optimizer=opt, loss=loss_type, metrics=[PSNR]) source_noise_model = get_noise_model(args.source_noise_model) target_noise_model = get_noise_model(args.target_noise_model) val_noise_model = get_noise_model(args.val_noise_model) generator = NoisyImageGenerator(image_dir, source_noise_model, target_noise_model, batch_size=batch_size, image_size=image_size) val_generator = ValGenerator(test_dir, val_noise_model) output_path.mkdir(parents=True, exist_ok=True) callbacks.append(LearningRateScheduler(schedule=Schedule(nb_epochs, lr))) callbacks.append(ModelCheckpoint(str(output_path) + "/weights.{epoch:03d}-{val_loss:.3f}-{val_PSNR:.5f}.hdf5", monitor="val_PSNR", verbose=1, mode="max", save_best_only=True)) hist = model.fit_generator(generator=generator, steps_per_epoch=steps, epochs=nb_epochs, validation_data=val_generator, verbose=1, callbacks=callbacks) np.savez(str(output_path.joinpath("history.npz")), history=hist.history)
Example #13
Source File: trainer.py From BetaElephant with MIT License | 4 votes |
def train(args): device = args.device load_path = args.load_path # load data train_data = load_data('train') val_data = load_data('validation') # load model with tf.device('/gpu:%d' % device): model = get_model('train') # trainer init optimizer = Config.optimizer train_step = optimizer.minimize(model.loss) # init session and server sess = tf.InteractiveSession() saver = tf.train.Saver() if load_path==None: sess.run(tf.initialize_all_variables()) else: saver.restore(sess, load_path) print("Model restored from %s" % load_path) # accuracy pred = tf.reshape(model.pred, [-1, 9*10*16]) label = tf.reshape(model.label, [-1, 9*10*16]) correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(label,1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) logging.basicConfig(filename='log.txt', level=logging.DEBUG) # train steps for i in range(Config.n_epoch): # training step batch_data, batch_label = train_data.next_batch(Config.minibatch_size) input_dict = {model.label:batch_label} for var, data in zip(model.inputs, batch_data): input_dict[var]=data #from IPython import embed;embed() sess.run(train_step, feed_dict=input_dict) # evalue step if (i+1)%Config.evalue_point == 0: batch_data, batch_label = val_data.next_batch(Config.minibatch_size) val_dict = {model.label:batch_label} for var, data in zip(model.inputs, batch_data): val_dict[var]=data score = accuracy.eval(feed_dict=val_dict) print("epoch %d, accuracy is %.2f" % (i,score)) logging.info("epoch %d, accuracy is %.2f" % (i,score)) # save step if (i+1)%Config.check_point == 0: save_path = saver.save(sess, "%s/epoch-%d" %(Config.save_path, i)) print("Model saved in file: %s" % save_path) logging.info("Model saved in file: %s" % save_path)
Example #14
Source File: trainer.py From BetaElephant with MIT License | 4 votes |
def train(args): device = args.device load_path = args.load_path # load data train_data = load_data('train') val_data = load_data('validation') # load model with tf.device('/gpu:%d' % device): model = get_model('train') # trainer init optimizer = Config.optimizer train_step = optimizer.minimize(model.loss) # init session and server sess = tf.InteractiveSession() saver = tf.train.Saver() if load_path==None: sess.run(tf.initialize_all_variables()) else: saver.restore(sess, load_path) print("Model restored from %s" % load_path) # accuracy pred = tf.reshape(model.pred, [-1, 9*10*16]) label = tf.reshape(model.label, [-1, 9*10*16]) correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(label,1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) logging.basicConfig(filename='log.txt', level=logging.DEBUG) # train steps for i in range(Config.n_epoch): # training step batch_data, batch_label = train_data.next_batch(Config.minibatch_size) input_dict = {model.label:batch_label} for var, data in zip(model.inputs, batch_data): input_dict[var]=data #from IPython import embed;embed() sess.run(train_step, feed_dict=input_dict) # evalue step if (i+1)%Config.evalue_point == 0: batch_data, batch_label = val_data.next_batch(Config.minibatch_size) val_dict = {model.label:batch_label} for var, data in zip(model.inputs, batch_data): val_dict[var]=data score = accuracy.eval(feed_dict=val_dict) print("epoch %d, accuracy is %.2f" % (i,score)) logging.info("epoch %d, accuracy is %.2f" % (i,score)) # save step if (i+1)%Config.check_point == 0: save_path = saver.save(sess, "%s/epoch-%d" %(Config.save_path, i)) print("Model saved in file: %s" % save_path) logging.info("Model saved in file: %s" % save_path)
Example #15
Source File: trainer.py From BetaElephant with MIT License | 4 votes |
def train(args): device = args.device load_path = args.load_path # load data train_data = load_data('train') val_data = load_data('validation') # load model with tf.device('/gpu:%d' % device): model = get_model('train') # trainer init optimizer = Config.optimizer train_step = optimizer.minimize(model.loss) # init session and server sess = tf.InteractiveSession() saver = tf.train.Saver() if load_path==None: sess.run(tf.initialize_all_variables()) else: saver.restore(sess, load_path) print("Model restored from %s" % load_path) # accuracy pred = tf.reshape(model.pred, [-1, 9*10*16]) label = tf.reshape(model.label, [-1, 9*10*16]) correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(label,1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) logging.basicConfig(filename='log.txt', level=logging.DEBUG) # train steps for i in range(Config.n_epoch): # training step batch_data, batch_label = train_data.next_batch(Config.minibatch_size) input_dict = {model.label:batch_label} for var, data in zip(model.inputs, batch_data): input_dict[var]=data #from IPython import embed;embed() sess.run(train_step, feed_dict=input_dict) # evalue step if (i+1)%Config.evalue_point == 0: batch_data, batch_label = val_data.next_batch(Config.minibatch_size) val_dict = {model.label:batch_label} for var, data in zip(model.inputs, batch_data): val_dict[var]=data score = accuracy.eval(feed_dict=val_dict) print("epoch %d, accuracy is %.2f" % (i,score)) logging.info("epoch %d, accuracy is %.2f" % (i,score)) # save step if (i+1)%Config.check_point == 0: save_path = saver.save(sess, "%s/epoch-%d" %(Config.save_path, i)) print("Model saved in file: %s" % save_path) logging.info("Model saved in file: %s" % save_path)
Example #16
Source File: train.py From n2n-watermark-remove with MIT License | 4 votes |
def main(): args = get_args() image_dir = args.image_dir test_dir = args.test_dir image_size = args.image_size batch_size = args.batch_size nb_epochs = args.nb_epochs lr = args.lr steps = args.steps loss_type = args.loss output_path = Path(__file__).resolve().parent.joinpath(args.output_path) model = get_model(args.model) if args.weight is not None: model.load_weights(args.weight) opt = Adam(lr=lr) callbacks = [] if loss_type == "l0": l0 = L0Loss() callbacks.append(UpdateAnnealingParameter(l0.gamma, nb_epochs, verbose=1)) loss_type = l0() model.compile(optimizer=opt, loss=loss_type, metrics=[PSNR]) source_noise_model = get_noise_model(args.source_noise_model) target_noise_model = get_noise_model(args.target_noise_model) val_noise_model = get_noise_model(args.val_noise_model) generator = NoisyImageGenerator(image_dir, source_noise_model, target_noise_model, batch_size=batch_size, image_size=image_size) val_generator = ValGenerator(test_dir, val_noise_model) output_path.mkdir(parents=True, exist_ok=True) callbacks.append(LearningRateScheduler(schedule=Schedule(nb_epochs, lr))) callbacks.append(ModelCheckpoint(str(output_path) + "/weights.{epoch:03d}-{val_loss:.3f}-{val_PSNR:.5f}.hdf5", monitor="val_PSNR", verbose=1, mode="max", save_best_only=True)) hist = model.fit_generator(generator=generator, steps_per_epoch=steps, epochs=nb_epochs, validation_data=val_generator, verbose=1, callbacks=callbacks) np.savez(str(output_path.joinpath("history.npz")), history=hist.history)
Example #17
Source File: trainer.py From BetaElephant with MIT License | 4 votes |
def train(args): device = args.device load_path = args.load_path # load data train_data = load_data('train') val_data = load_data('validation') # load model with tf.device('/gpu:%d' % device): model = get_model('train') # trainer init optimizer = Config.optimizer train_step = optimizer.minimize(model.loss) # init session and server sess = tf.InteractiveSession() saver = tf.train.Saver() if load_path==None: sess.run(tf.initialize_all_variables()) else: saver.restore(sess, load_path) print("Model restored from %s" % load_path) # accuracy pred = tf.reshape(model.pred, [-1, 9*10*16]) label = tf.reshape(model.label, [-1, 9*10*16]) correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(label,1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) logging.basicConfig(filename='log.txt', level=logging.DEBUG) # train steps for i in range(Config.n_epoch): # training step batch_data, batch_label = train_data.next_batch(Config.minibatch_size) input_dict = {model.label:batch_label} for var, data in zip(model.inputs, batch_data): input_dict[var]=data #from IPython import embed;embed() sess.run(train_step, feed_dict=input_dict) # evalue step if (i+1)%Config.evalue_point == 0: batch_data, batch_label = val_data.next_batch(Config.minibatch_size) val_dict = {model.label:batch_label} for var, data in zip(model.inputs, batch_data): val_dict[var]=data score = accuracy.eval(feed_dict=val_dict) print("epoch %d, accuracy is %.2f" % (i,score)) logging.info("epoch %d, accuracy is %.2f" % (i,score)) # save step if (i+1)%Config.check_point == 0: save_path = saver.save(sess, "%s/epoch-%d" %(Config.save_path, i)) print("Model saved in file: %s" % save_path) logging.info("Model saved in file: %s" % save_path)
Example #18
Source File: trainer.py From BetaElephant with MIT License | 4 votes |
def train(args): device = args.device load_path = args.load_path # load data train_data = load_data('train') val_data = load_data('validation') # load model with tf.device('/gpu:%d' % device): model = get_model('train') # trainer init optimizer = Config.optimizer train_step = optimizer.minimize(model.loss) # init session and server sess = tf.InteractiveSession() saver = tf.train.Saver() if load_path==None: sess.run(tf.initialize_all_variables()) else: saver.restore(sess, load_path) print("Model restored from %s" % load_path) # accuracy pred = tf.reshape(model.pred, [-1, 9*10*16]) label = tf.reshape(model.label, [-1, 9*10*16]) correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(label,1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) logging.basicConfig(filename='log.txt', level=logging.DEBUG) # train steps for i in range(Config.n_epoch): # training step batch_data, batch_label = train_data.next_batch(Config.minibatch_size) input_dict = {model.label:batch_label} for var, data in zip(model.inputs, batch_data): input_dict[var]=data #from IPython import embed;embed() sess.run(train_step, feed_dict=input_dict) # evalue step if (i+1)%Config.evalue_point == 0: batch_data, batch_label = val_data.next_batch(Config.minibatch_size) val_dict = {model.label:batch_label} for var, data in zip(model.inputs, batch_data): val_dict[var]=data score = accuracy.eval(feed_dict=val_dict) print("epoch %d, accuracy is %.2f" % (i,score)) logging.info("epoch %d, accuracy is %.2f" % (i,score)) # save step if (i+1)%Config.check_point == 0: save_path = saver.save(sess, "%s/epoch-%d" %(Config.save_path, i)) print("Model saved in file: %s" % save_path) logging.info("Model saved in file: %s" % save_path)
Example #19
Source File: trainer.py From BetaElephant with MIT License | 4 votes |
def train(args): device = args.device load_path = args.load_path # load data train_data = load_data('train') val_data = load_data('validation') # load model with tf.device('/gpu:%d' % device): model = get_model('policy') # trainer init optimizer = Config.optimizer train_step = optimizer.minimize(model.loss) # init session and server sess = tf.InteractiveSession() saver = tf.train.Saver() if load_path==None: sess.run(tf.initialize_all_variables()) else: saver.restore(sess, load_path) print("Model restored from %s" % load_path) # accuracy pred = tf.reshape(model.pred, [-1, 9*10*16]) label = tf.reshape(model.label, [-1, 9*10*16]) correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(label,1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) logging.basicConfig(filename='log.txt', level=logging.DEBUG) # train steps for i in range(Config.n_epoch): # training step batch_data, batch_label = train_data.next_batch(Config.minibatch_size) input_dict = {model.label:batch_label} for var, data in zip(model.inputs, batch_data): input_dict[var]=data #from IPython import embed;embed() sess.run(train_step, feed_dict=input_dict) # evalue step if (i+1)%Config.evalue_point == 0: batch_data, batch_label = val_data.next_batch(Config.minibatch_size) val_dict = {model.label:batch_label} for var, data in zip(model.inputs, batch_data): val_dict[var]=data score = accuracy.eval(feed_dict=val_dict) print("epoch %d, accuracy is %.2f" % (i,score)) logging.info("epoch %d, accuracy is %.2f" % (i,score)) # save step if (i+1)%Config.check_point == 0: save_path = saver.save(sess, "%s/epoch-%d" %(Config.save_path, i)) print("Model saved in file: %s" % save_path) logging.info("Model saved in file: %s" % save_path)
Example #20
Source File: trainer.py From BetaElephant with MIT License | 4 votes |
def train(args): device = args.device load_path = args.load_path # load data train_data = load_data('train') val_data = load_data('validation') # load model with tf.device('/gpu:%d' % device): model = get_model('train') # trainer init optimizer = Config.optimizer train_step = optimizer.minimize(model.loss) # init session and server sess = tf.InteractiveSession() saver = tf.train.Saver() if load_path==None: sess.run(tf.initialize_all_variables()) else: saver.restore(sess, load_path) print("Model restored from %s" % load_path) # accuracy pred = tf.reshape(model.pred, [-1, 9*10*16]) label = tf.reshape(model.label, [-1, 9*10*16]) correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(label,1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) logging.basicConfig(filename='log.txt', level=logging.DEBUG) # train steps for i in range(Config.n_epoch): # training step batch_data, batch_label = train_data.next_batch(Config.minibatch_size) input_dict = {model.label:batch_label} for var, data in zip(model.inputs, batch_data): input_dict[var]=data #from IPython import embed;embed() sess.run(train_step, feed_dict=input_dict) # evalue step if (i+1)%Config.evalue_point == 0: batch_data, batch_label = val_data.next_batch(Config.minibatch_size) val_dict = {model.label:batch_label} for var, data in zip(model.inputs, batch_data): val_dict[var]=data score = accuracy.eval(feed_dict=val_dict) print("epoch %d, accuracy is %.2f" % (i,score)) logging.info("epoch %d, accuracy is %.2f" % (i,score)) # save step if (i+1)%Config.check_point == 0: save_path = saver.save(sess, "%s/epoch-%d" %(Config.save_path, i)) print("Model saved in file: %s" % save_path) logging.info("Model saved in file: %s" % save_path)
Example #21
Source File: trainer.py From BetaElephant with MIT License | 4 votes |
def train(args): device = args.device load_path = args.load_path # load data train_data = load_data('train') val_data = load_data('validation') # load model with tf.device('/gpu:%d' % device): model = get_model('train') # trainer init optimizer = Config.optimizer train_step = optimizer.minimize(model.loss) # init session and server sess = tf.InteractiveSession() saver = tf.train.Saver() if load_path==None: sess.run(tf.initialize_all_variables()) else: saver.restore(sess, load_path) print("Model restored from %s" % load_path) # accuracy pred = tf.reshape(model.pred, [-1, 9*10*16]) label = tf.reshape(model.label, [-1, 9*10*16]) correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(label,1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) logging.basicConfig(filename='log.txt', level=logging.DEBUG) # train steps for i in range(Config.n_epoch): # training step batch_data, batch_label = train_data.next_batch(Config.minibatch_size) input_dict = {model.label:batch_label} for var, data in zip(model.inputs, batch_data): input_dict[var]=data #from IPython import embed;embed() sess.run(train_step, feed_dict=input_dict) # evalue step if (i+1)%Config.evalue_point == 0: batch_data, batch_label = val_data.next_batch(Config.minibatch_size) val_dict = {model.label:batch_label} for var, data in zip(model.inputs, batch_data): val_dict[var]=data score = accuracy.eval(feed_dict=val_dict) print("epoch %d, accuracy is %.2f" % (i,score)) logging.info("epoch %d, accuracy is %.2f" % (i,score)) # save step if (i+1)%Config.check_point == 0: save_path = saver.save(sess, "%s/epoch-%d" %(Config.save_path, i)) print("Model saved in file: %s" % save_path) logging.info("Model saved in file: %s" % save_path)
Example #22
Source File: trainer.py From BetaElephant with MIT License | 4 votes |
def train(args): device = args.device load_path = args.load_path # load data train_data = load_data('train') val_data = load_data('validation') # load model with tf.device('/gpu:%d' % device): model = get_model('train') # trainer init optimizer = Config.optimizer train_step = optimizer.minimize(model.loss) # init session and server sess = tf.InteractiveSession() saver = tf.train.Saver() if load_path==None: sess.run(tf.initialize_all_variables()) else: saver.restore(sess, load_path) print("Model restored from %s" % load_path) # accuracy pred = tf.reshape(model.pred, [-1, 9*10*16]) label = tf.reshape(model.label, [-1, 9*10*16]) correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(label,1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) logging.basicConfig(filename='log.txt', level=logging.DEBUG) # train steps for i in range(Config.n_epoch): # training step batch_data, batch_label = train_data.next_batch(Config.minibatch_size) input_dict = {model.label:batch_label} for var, data in zip(model.inputs, batch_data): input_dict[var]=data #from IPython import embed;embed() sess.run(train_step, feed_dict=input_dict) # evalue step if (i+1)%Config.evalue_point == 0: batch_data, batch_label = val_data.next_batch(Config.minibatch_size) val_dict = {model.label:batch_label} for var, data in zip(model.inputs, batch_data): val_dict[var]=data score = accuracy.eval(feed_dict=val_dict) print("epoch %d, accuracy is %.2f" % (i,score)) logging.info("epoch %d, accuracy is %.2f" % (i,score)) # save step if (i+1)%Config.check_point == 0: save_path = saver.save(sess, "%s/epoch-%d" %(Config.save_path, i)) print("Model saved in file: %s" % save_path) logging.info("Model saved in file: %s" % save_path)
Example #23
Source File: trainer.py From BetaElephant with MIT License | 4 votes |
def train(args): device = args.device load_path = args.load_path # load data train_data = load_data('train') val_data = load_data('validation') # load model with tf.device('/gpu:%d' % device): model = get_model('train') # trainer init optimizer = Config.optimizer train_step = optimizer.minimize(model.loss) # init session and server sess = tf.InteractiveSession() saver = tf.train.Saver() if load_path==None: sess.run(tf.initialize_all_variables()) else: saver.restore(sess, load_path) print("Model restored from %s" % load_path) # accuracy pred = tf.reshape(model.pred, [-1, 9*10*16]) label = tf.reshape(model.label, [-1, 9*10*16]) correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(label,1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) # train steps for i in range(Config.n_epoch): # training step batch_data, batch_label = train_data.next_batch(Config.minibatch_size) input_dict = {model.label:batch_label} for var, data in zip(model.inputs, batch_data): input_dict[var]=data #from IPython import embed;embed() sess.run(train_step, feed_dict=input_dict) # evalue step if (i+1)%Config.evalue_point == 0: batch_data, batch_label = val_data.next_batch(Config.minibatch_size) val_dict = {model.label:batch_label} for var, data in zip(model.inputs, batch_data): val_dict[var]=data score = accuracy.eval(feed_dict=val_dict) print("epoch %d, accuracy is %.2f" % (i,score)) # save step if (i+1)%Config.check_point == 0: save_path = saver.save(sess, "%s/epoch-%d" %(Config.save_path, i)) print("Model saved in file: %s" % save_path)
Example #24
Source File: trainer.py From BetaElephant with MIT License | 4 votes |
def train(args): device = args.device load_path = args.load_path # load data train_data = load_data('train') val_data = load_data('validation') # load model with tf.device('/gpu:%d' % device): model = get_model('train') # trainer init optimizer = Config.optimizer train_step = optimizer.minimize(model.loss) # init session and server sess = tf.InteractiveSession() saver = tf.train.Saver() if load_path==None: sess.run(tf.initialize_all_variables()) else: saver.restore(sess, load_path) print("Model restored from %s" % load_path) # accuracy pred = tf.reshape(model.pred, [-1, 9*10*16]) label = tf.reshape(model.label, [-1, 9*10*16]) correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(label,1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) logging.basicConfig(filename='log.txt', level=logging.DEBUG) # train steps for i in range(Config.n_epoch): # training step batch_data, batch_label = train_data.next_batch(Config.minibatch_size) input_dict = {model.label:batch_label} for var, data in zip(model.inputs, batch_data): input_dict[var]=data #from IPython import embed;embed() sess.run(train_step, feed_dict=input_dict) # evalue step if (i+1)%Config.evalue_point == 0: batch_data, batch_label = val_data.next_batch(Config.minibatch_size) val_dict = {model.label:batch_label} for var, data in zip(model.inputs, batch_data): val_dict[var]=data score = accuracy.eval(feed_dict=val_dict) print("epoch %d, accuracy is %.2f" % (i,score)) logging.info("epoch %d, accuracy is %.2f" % (i,score)) # save step if (i+1)%Config.check_point == 0: save_path = saver.save(sess, "%s/epoch-%d" %(Config.save_path, i)) print("Model saved in file: %s" % save_path) logging.info("Model saved in file: %s" % save_path)