Python model.MaskRCNN() Examples
The following are 1
code examples of model.MaskRCNN().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
model
, or try the search function
.
Example #1
Source File: segment_train.py From SketchyScene with MIT License | 4 votes |
def instance_segment_train(**kwargs): data_base_dir = kwargs['data_base_dir'] init_with = kwargs['init_with'] outputs_base_dir = 'outputs' pretrained_model_base_dir = 'pretrained_model' save_model_dir = os.path.join(outputs_base_dir, 'snapshot') log_dir = os.path.join(outputs_base_dir, 'log') coco_model_path = os.path.join(pretrained_model_base_dir, 'mask_rcnn_coco.h5') imagenet_model_path = os.path.join(pretrained_model_base_dir, 'resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5') os.makedirs(save_model_dir, exist_ok=True) os.makedirs(log_dir, exist_ok=True) config = SketchTrainConfig() config.display() # Training dataset dataset_train = SketchDataset(data_base_dir) dataset_train.load_sketches("train") dataset_train.prepare() # Create model in training mode model = modellib.MaskRCNN(mode="training", config=config, model_dir=save_model_dir, log_dir=log_dir) if init_with == "imagenet": print("Loading weights from ", imagenet_model_path) model.load_weights(imagenet_model_path, by_name=True) elif init_with == "coco": # Load weights trained on MS COCO, but skip layers that # are different due to the different number of classes print("Loading weights from ", coco_model_path) model.load_weights(coco_model_path, by_name=True, exclude=["mrcnn_class_logits", "mrcnn_bbox_fc", "mrcnn_bbox", "mrcnn_mask"]) elif init_with == "last": # Load the last model you trained and continue training last_model_path = model.find_last()[1] print("Loading weights from ", last_model_path) model.load_weights(last_model_path, by_name=True) else: print("Training from fresh start.") # Fine tune all layers model.train(dataset_train, learning_rate=config.LEARNING_RATE, epochs=config.TOTAL_EPOCH, layers="all") # Save final weights save_model_path = os.path.join(save_model_dir, "mask_rcnn_" + config.NAME + "_" + str(config.TOTAL_EPOCH) + ".h5") model.keras_model.save_weights(save_model_path)