Python model.generate_model() Examples
The following are 1
code examples of model.generate_model().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
model
, or try the search function
.
Example #1
Source File: online_test_wo_detector.py From Real-time-GesRec with MIT License | 4 votes |
def load_models(opt): opt.resume_path = opt.resume_path_clf opt.pretrain_path = opt.pretrain_path_clf opt.sample_duration = opt.sample_duration_clf opt.model = opt.model_clf opt.model_depth = opt.model_depth_clf opt.width_mult = opt.width_mult_clf opt.modality = opt.modality_clf opt.resnet_shortcut = opt.resnet_shortcut_clf opt.n_classes = opt.n_classes_clf opt.n_finetune_classes = opt.n_finetune_classes_clf if opt.root_path != '': opt.video_path = os.path.join(opt.root_path, opt.video_path) opt.annotation_path = os.path.join(opt.root_path, opt.annotation_path) opt.result_path = os.path.join(opt.root_path, opt.result_path) if opt.resume_path: opt.resume_path = os.path.join(opt.root_path, opt.resume_path) if opt.pretrain_path: opt.pretrain_path = os.path.join(opt.root_path, opt.pretrain_path) opt.scales = [opt.initial_scale] for i in range(1, opt.n_scales): opt.scales.append(opt.scales[-1] * opt.scale_step) opt.arch = '{}'.format(opt.model) opt.mean = get_mean(opt.norm_value) opt.std = get_std(opt.norm_value) print(opt) with open(os.path.join(opt.result_path, 'opts_clf.json'), 'w') as opt_file: json.dump(vars(opt), opt_file) torch.manual_seed(opt.manual_seed) classifier, parameters = generate_model(opt) if opt.resume_path: print('loading checkpoint {}'.format(opt.resume_path)) checkpoint = torch.load(opt.resume_path) # assert opt.arch == checkpoint['arch'] classifier.load_state_dict(checkpoint['state_dict']) print('Model 2 \n', classifier) pytorch_total_params = sum(p.numel() for p in classifier.parameters() if p.requires_grad) print("Total number of trainable parameters: ", pytorch_total_params) return classifier