Python model.SummarizationModel() Examples

The following are 1 code examples of model.SummarizationModel(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module model , or try the search function .
Example #1
Source File: run_summarization.py    From pointer-generator with Apache License 2.0 4 votes vote down vote up
def main(unused_argv):
  if len(unused_argv) != 1: # prints a message if you've entered flags incorrectly
    raise Exception("Problem with flags: %s" % unused_argv)

  tf.logging.set_verbosity(tf.logging.INFO) # choose what level of logging you want
  tf.logging.info('Starting seq2seq_attention in %s mode...', (FLAGS.mode))

  # Change log_root to FLAGS.log_root/FLAGS.exp_name and create the dir if necessary
  FLAGS.log_root = os.path.join(FLAGS.log_root, FLAGS.exp_name)
  if not os.path.exists(FLAGS.log_root):
    if FLAGS.mode=="train":
      os.makedirs(FLAGS.log_root)
    else:
      raise Exception("Logdir %s doesn't exist. Run in train mode to create it." % (FLAGS.log_root))

  vocab = Vocab(FLAGS.vocab_path, FLAGS.vocab_size) # create a vocabulary

  # If in decode mode, set batch_size = beam_size
  # Reason: in decode mode, we decode one example at a time.
  # On each step, we have beam_size-many hypotheses in the beam, so we need to make a batch of these hypotheses.
  if FLAGS.mode == 'decode':
    FLAGS.batch_size = FLAGS.beam_size

  # If single_pass=True, check we're in decode mode
  if FLAGS.single_pass and FLAGS.mode!='decode':
    raise Exception("The single_pass flag should only be True in decode mode")

  # Make a namedtuple hps, containing the values of the hyperparameters that the model needs
  hparam_list = ['mode', 'lr', 'adagrad_init_acc', 'rand_unif_init_mag', 'trunc_norm_init_std', 'max_grad_norm', 'hidden_dim', 'emb_dim', 'batch_size', 'max_dec_steps', 'max_enc_steps', 'coverage', 'cov_loss_wt', 'pointer_gen']
  hps_dict = {}
  for key,val in FLAGS.__flags.iteritems(): # for each flag
    if key in hparam_list: # if it's in the list
      hps_dict[key] = val # add it to the dict
  hps = namedtuple("HParams", hps_dict.keys())(**hps_dict)

  # Create a batcher object that will create minibatches of data
  batcher = Batcher(FLAGS.data_path, vocab, hps, single_pass=FLAGS.single_pass)

  tf.set_random_seed(111) # a seed value for randomness

  if hps.mode == 'train':
    print "creating model..."
    model = SummarizationModel(hps, vocab)
    setup_training(model, batcher)
  elif hps.mode == 'eval':
    model = SummarizationModel(hps, vocab)
    run_eval(model, batcher, vocab)
  elif hps.mode == 'decode':
    decode_model_hps = hps  # This will be the hyperparameters for the decoder model
    decode_model_hps = hps._replace(max_dec_steps=1) # The model is configured with max_dec_steps=1 because we only ever run one step of the decoder at a time (to do beam search). Note that the batcher is initialized with max_dec_steps equal to e.g. 100 because the batches need to contain the full summaries
    model = SummarizationModel(decode_model_hps, vocab)
    decoder = BeamSearchDecoder(model, batcher, vocab)
    decoder.decode() # decode indefinitely (unless single_pass=True, in which case deocde the dataset exactly once)
  else:
    raise ValueError("The 'mode' flag must be one of train/eval/decode")