Python model.Transformer() Examples
The following are 4
code examples of model.Transformer().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
model
, or try the search function
.
Example #1
Source File: transform.py From torch-light with MIT License | 6 votes |
def __init__(self, model_source, cuda=False, beam_size=3): self.torch = torch.cuda if cuda else torch self.cuda = cuda self.beam_size = beam_size if self.cuda: model_source = torch.load(model_source) else: model_source = torch.load(model_source, map_location=lambda storage, loc: storage) self.src_dict = model_source["src_dict"] self.tgt_dict = model_source["tgt_dict"] self.src_idx2word = {v: k for k, v in model_source["tgt_dict"].items()} self.args = args = model_source["settings"] model = Transformer(args) model.load_state_dict(model_source['model']) if self.cuda: model = model.cuda() else: model = model.cpu() self.model = model.eval()
Example #2
Source File: pred.py From transformer-pointer-generator with MIT License | 6 votes |
def __init__(self, args): """ :param model_dir: model dir path :param vocab_file: vocab file path """ self.tf = import_tf(0) self.args = args self.model_dir = args.logdir self.vocab_file = args.vocab self.token2idx, self.idx2token = _load_vocab(args.vocab) hparams = Hparams() parser = hparams.parser self.hp = parser.parse_args() self.model = Transformer(self.hp) self._add_placeholder() self._init_graph()
Example #3
Source File: predict.py From torch-light with MIT License | 5 votes |
def __init__(self, model_source, rewrite_len=30, beam_size=4, debug=False): self.beam_size = beam_size self.rewrite_len = rewrite_len self.debug = debug model_source = torch.load( model_source, map_location=lambda storage, loc: storage) self.dict = model_source["word2idx"] self.idx2word = {v: k for k, v in model_source["word2idx"].items()} self.args = args = model_source["settings"] torch.manual_seed(args.seed) model = Transformer(args) model.load_state_dict(model_source['model']) self.model = model.eval()
Example #4
Source File: transformer_main.py From texar-pytorch with Apache License 2.0 | 5 votes |
def __init__(self, model: Transformer, beam_width: int): super().__init__() self.model = model self.beam_width = beam_width