Python model.dueling_model() Examples
The following are 6
code examples of model.dueling_model().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
model
, or try the search function
.
Example #1
Source File: enjoy-adv.py From neural-fingerprinting with BSD 3-Clause "New" or "Revised" License | 6 votes |
def __init__(self, env, dueling, noisy, fname): self.g = tf.Graph() self.noisy = noisy self.dueling = dueling self.env = env with self.g.as_default(): self.act = deepq.build_act_enjoy( make_obs_ph=lambda name: U.Uint8Input( env.observation_space.shape, name=name), q_func=dueling_model if dueling else model, num_actions=env.action_space.n, noisy=noisy ) self.saver = tf.train.Saver() self.sess = tf.Session(graph=self.g) if fname is not None: print('Loading Model...') self.saver.restore(self.sess, fname)
Example #2
Source File: enjoy-adv.py From rl-attack with MIT License | 6 votes |
def __init__(self, env, dueling, noisy, fname): self.g = tf.Graph() self.noisy = noisy self.dueling = dueling self.env = env with self.g.as_default(): self.act = deepq.build_act_enjoy( make_obs_ph=lambda name: U.Uint8Input(env.observation_space.shape, name=name), q_func=dueling_model if dueling else model, num_actions=env.action_space.n, noisy=noisy ) self.saver = tf.train.Saver() self.sess = tf.Session(graph=self.g) if fname is not None: print ('Loading Model...') self.saver.restore(self.sess, fname)
Example #3
Source File: enjoy-adv.py From cleverhans with MIT License | 6 votes |
def __init__(self, env, dueling, noisy, fname): self.g = tf.Graph() self.noisy = noisy self.dueling = dueling self.env = env with self.g.as_default(): self.act = deepq.build_act_enjoy( make_obs_ph=lambda name: U.Uint8Input( env.observation_space.shape, name=name), q_func=dueling_model if dueling else model, num_actions=env.action_space.n, noisy=noisy ) self.saver = tf.train.Saver() self.sess = tf.Session(graph=self.g) if fname is not None: print('Loading Model...') self.saver.restore(self.sess, fname)
Example #4
Source File: enjoy-adv.py From neural-fingerprinting with BSD 3-Clause "New" or "Revised" License | 5 votes |
def craft_adv(self): with self.sess.as_default(): with self.g.as_default(): craft_adv_obs = deepq.build_adv( make_obs_tf=lambda name: U.Uint8Input( self.env.observation_space.shape, name=name), q_func=dueling_model if self.dueling else model, num_actions=self.env.action_space.n, epsilon=1.0 / 255.0, noisy=self.noisy, ) return craft_adv_obs
Example #5
Source File: enjoy-adv.py From rl-attack with MIT License | 5 votes |
def craft_adv(self): with self.sess.as_default(): with self.g.as_default(): craft_adv_obs = deepq.build_adv( make_obs_tf=lambda name: U.Uint8Input(self.env.observation_space.shape, name=name), q_func=dueling_model if self.dueling else model, num_actions=self.env.action_space.n, epsilon = 1.0/255.0, noisy=self.noisy, ) return craft_adv_obs
Example #6
Source File: enjoy-adv.py From cleverhans with MIT License | 5 votes |
def craft_adv(self): with self.sess.as_default(): with self.g.as_default(): craft_adv_obs = deepq.build_adv( make_obs_tf=lambda name: U.Uint8Input( self.env.observation_space.shape, name=name), q_func=dueling_model if self.dueling else model, num_actions=self.env.action_space.n, epsilon=1.0 / 255.0, noisy=self.noisy, ) return craft_adv_obs