Python model.get_embedder() Examples
The following are 12
code examples of model.get_embedder().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
model
, or try the search function
.
Example #1
Source File: mvtcn_estimator.py From yolo_v2 with Apache License 2.0 | 6 votes |
def forward(self, images_concat, is_training, reuse=False): """See base class.""" embedder_strategy = self._config.embedder_strategy loss_strategy = self._config.loss_strategy l2_normalize_embedding = self._config[loss_strategy].embedding_l2 embedder = model_module.get_embedder( embedder_strategy, self._config, images_concat, is_training=is_training, l2_normalize_embedding=l2_normalize_embedding, reuse=reuse) embeddings_concat = embedder.construct_embedding() variables_to_train = embedder.get_trainable_variables() self.variables_to_train = variables_to_train self.pretrained_init_fn = embedder.init_fn return embeddings_concat
Example #2
Source File: mvtcn_estimator.py From Gun-Detector with Apache License 2.0 | 6 votes |
def forward(self, images_concat, is_training, reuse=False): """See base class.""" embedder_strategy = self._config.embedder_strategy loss_strategy = self._config.loss_strategy l2_normalize_embedding = self._config[loss_strategy].embedding_l2 embedder = model_module.get_embedder( embedder_strategy, self._config, images_concat, is_training=is_training, l2_normalize_embedding=l2_normalize_embedding, reuse=reuse) embeddings_concat = embedder.construct_embedding() variables_to_train = embedder.get_trainable_variables() self.variables_to_train = variables_to_train self.pretrained_init_fn = embedder.init_fn return embeddings_concat
Example #3
Source File: mvtcn_estimator.py From object_detection_with_tensorflow with MIT License | 6 votes |
def forward(self, images_concat, is_training, reuse=False): """See base class.""" embedder_strategy = self._config.embedder_strategy loss_strategy = self._config.loss_strategy l2_normalize_embedding = self._config[loss_strategy].embedding_l2 embedder = model_module.get_embedder( embedder_strategy, self._config, images_concat, is_training=is_training, l2_normalize_embedding=l2_normalize_embedding, reuse=reuse) embeddings_concat = embedder.construct_embedding() variables_to_train = embedder.get_trainable_variables() self.variables_to_train = variables_to_train self.pretrained_init_fn = embedder.init_fn return embeddings_concat
Example #4
Source File: mvtcn_estimator.py From g-tensorflow-models with Apache License 2.0 | 6 votes |
def forward(self, images_concat, is_training, reuse=False): """See base class.""" embedder_strategy = self._config.embedder_strategy loss_strategy = self._config.loss_strategy l2_normalize_embedding = self._config[loss_strategy].embedding_l2 embedder = model_module.get_embedder( embedder_strategy, self._config, images_concat, is_training=is_training, l2_normalize_embedding=l2_normalize_embedding, reuse=reuse) embeddings_concat = embedder.construct_embedding() variables_to_train = embedder.get_trainable_variables() self.variables_to_train = variables_to_train self.pretrained_init_fn = embedder.init_fn return embeddings_concat
Example #5
Source File: mvtcn_estimator.py From models with Apache License 2.0 | 6 votes |
def forward(self, images_concat, is_training, reuse=False): """See base class.""" embedder_strategy = self._config.embedder_strategy loss_strategy = self._config.loss_strategy l2_normalize_embedding = self._config[loss_strategy].embedding_l2 embedder = model_module.get_embedder( embedder_strategy, self._config, images_concat, is_training=is_training, l2_normalize_embedding=l2_normalize_embedding, reuse=reuse) embeddings_concat = embedder.construct_embedding() variables_to_train = embedder.get_trainable_variables() self.variables_to_train = variables_to_train self.pretrained_init_fn = embedder.init_fn return embeddings_concat
Example #6
Source File: mvtcn_estimator.py From multilabel-image-classification-tensorflow with MIT License | 6 votes |
def forward(self, images_concat, is_training, reuse=False): """See base class.""" embedder_strategy = self._config.embedder_strategy loss_strategy = self._config.loss_strategy l2_normalize_embedding = self._config[loss_strategy].embedding_l2 embedder = model_module.get_embedder( embedder_strategy, self._config, images_concat, is_training=is_training, l2_normalize_embedding=l2_normalize_embedding, reuse=reuse) embeddings_concat = embedder.construct_embedding() variables_to_train = embedder.get_trainable_variables() self.variables_to_train = variables_to_train self.pretrained_init_fn = embedder.init_fn return embeddings_concat
Example #7
Source File: svtcn_estimator.py From yolo_v2 with Apache License 2.0 | 5 votes |
def forward(self, images, is_training, reuse=False): """See base class.""" embedder_strategy = self._config.embedder_strategy embedder = model_module.get_embedder( embedder_strategy, self._config, images, is_training=is_training, reuse=reuse) embeddings = embedder.construct_embedding() if is_training: self.variables_to_train = embedder.get_trainable_variables() self.pretrained_init_fn = embedder.init_fn return embeddings
Example #8
Source File: svtcn_estimator.py From Gun-Detector with Apache License 2.0 | 5 votes |
def forward(self, images, is_training, reuse=False): """See base class.""" embedder_strategy = self._config.embedder_strategy embedder = model_module.get_embedder( embedder_strategy, self._config, images, is_training=is_training, reuse=reuse) embeddings = embedder.construct_embedding() if is_training: self.variables_to_train = embedder.get_trainable_variables() self.pretrained_init_fn = embedder.init_fn return embeddings
Example #9
Source File: svtcn_estimator.py From object_detection_with_tensorflow with MIT License | 5 votes |
def forward(self, images, is_training, reuse=False): """See base class.""" embedder_strategy = self._config.embedder_strategy embedder = model_module.get_embedder( embedder_strategy, self._config, images, is_training=is_training, reuse=reuse) embeddings = embedder.construct_embedding() if is_training: self.variables_to_train = embedder.get_trainable_variables() self.pretrained_init_fn = embedder.init_fn return embeddings
Example #10
Source File: svtcn_estimator.py From g-tensorflow-models with Apache License 2.0 | 5 votes |
def forward(self, images, is_training, reuse=False): """See base class.""" embedder_strategy = self._config.embedder_strategy embedder = model_module.get_embedder( embedder_strategy, self._config, images, is_training=is_training, reuse=reuse) embeddings = embedder.construct_embedding() if is_training: self.variables_to_train = embedder.get_trainable_variables() self.pretrained_init_fn = embedder.init_fn return embeddings
Example #11
Source File: svtcn_estimator.py From models with Apache License 2.0 | 5 votes |
def forward(self, images, is_training, reuse=False): """See base class.""" embedder_strategy = self._config.embedder_strategy embedder = model_module.get_embedder( embedder_strategy, self._config, images, is_training=is_training, reuse=reuse) embeddings = embedder.construct_embedding() if is_training: self.variables_to_train = embedder.get_trainable_variables() self.pretrained_init_fn = embedder.init_fn return embeddings
Example #12
Source File: svtcn_estimator.py From multilabel-image-classification-tensorflow with MIT License | 5 votes |
def forward(self, images, is_training, reuse=False): """See base class.""" embedder_strategy = self._config.embedder_strategy embedder = model_module.get_embedder( embedder_strategy, self._config, images, is_training=is_training, reuse=reuse) embeddings = embedder.construct_embedding() if is_training: self.variables_to_train = embedder.get_trainable_variables() self.pretrained_init_fn = embedder.init_fn return embeddings