Python model.D_NET64 Examples

The following are 4 code examples of model.D_NET64(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module model , or try the search function .
Example #1
Source File: blah.py    From Recipe2ImageGAN with MIT License 4 votes vote down vote up
def load_network(gpus):
    netG = G_NET()
    netG.apply(weights_init)
    netG = torch.nn.DataParallel(netG, device_ids=gpus)
    print(netG)

    netsD = []
    if cfg.TREE.BRANCH_NUM > 0:
        netsD.append(D_NET64())
    if cfg.TREE.BRANCH_NUM > 1:
        netsD.append(D_NET128())
    if cfg.TREE.BRANCH_NUM > 2:
        netsD.append(D_NET256())
    if cfg.TREE.BRANCH_NUM > 3:
        netsD.append(D_NET512())
    if cfg.TREE.BRANCH_NUM > 4:
        netsD.append(D_NET1024())
    # TODO: if cfg.TREE.BRANCH_NUM > 5:

    for i in range(len(netsD)):
        netsD[i].apply(weights_init)
        netsD[i] = torch.nn.DataParallel(netsD[i], device_ids=gpus)
        # print(netsD[i])
    print('# of netsD', len(netsD))

    count = 0
    if cfg.TRAIN.NET_G != '':
        state_dict = torch.load(cfg.TRAIN.NET_G)
        netG.load_state_dict(state_dict)
        print('Load ', cfg.TRAIN.NET_G)

        istart = cfg.TRAIN.NET_G.rfind('_') + 1
        iend = cfg.TRAIN.NET_G.rfind('.')
        count = cfg.TRAIN.NET_G[istart:iend]
        count = int(count) + 1

    if cfg.TRAIN.NET_D != '':
        for i in range(len(netsD)):
            print('Load %s_%d.pth' % (cfg.TRAIN.NET_D, i))
            state_dict = torch.load('%s%d.pth' % (cfg.TRAIN.NET_D, i))
            netsD[i].load_state_dict(state_dict)

    inception_model = INCEPTION_V3()

    if cfg.CUDA:
        netG.cuda()
        for i in range(len(netsD)):
            netsD[i].cuda()
        inception_model = inception_model.cuda()
    inception_model.eval()

    return netG, netsD, len(netsD), inception_model, count 
Example #2
Source File: trainer.py    From Recipe2ImageGAN with MIT License 4 votes vote down vote up
def load_network(gpus):
    netG = G_NET()
    netG.apply(weights_init)
    netG = torch.nn.DataParallel(netG, device_ids=gpus)
    print(netG)

    netsD = []
    if cfg.TREE.BRANCH_NUM > 0:
        netsD.append(D_NET64())
    if cfg.TREE.BRANCH_NUM > 1:
        netsD.append(D_NET128())
    if cfg.TREE.BRANCH_NUM > 2:
        netsD.append(D_NET256())
    if cfg.TREE.BRANCH_NUM > 3:
        netsD.append(D_NET512())
    if cfg.TREE.BRANCH_NUM > 4:
        netsD.append(D_NET1024())
    # TODO: if cfg.TREE.BRANCH_NUM > 5:

    for i in range(len(netsD)):
        netsD[i].apply(weights_init)
        netsD[i] = torch.nn.DataParallel(netsD[i], device_ids=gpus)
        # print(netsD[i])
    print('# of netsD', len(netsD))

    count = 0
    if cfg.TRAIN.NET_G != '':
        state_dict = torch.load(cfg.TRAIN.NET_G)
        netG.load_state_dict(state_dict)
        print('Load ', cfg.TRAIN.NET_G)

        try:
            istart = cfg.TRAIN.NET_G.rfind('_') + 1
            iend = cfg.TRAIN.NET_G.rfind('.')
            count = cfg.TRAIN.NET_G[istart:iend]
            count = int(count)
        except:
            last_run_dir = cfg.DATA_DIR + '/' + cfg.LAST_RUN_DIR + '/Model'
            with open(last_run_dir + '/count.txt', 'r') as f:
                count = int(f.read())

        count = int(count) + 1

    if cfg.TRAIN.NET_D != '':
        for i in range(len(netsD)):
            print('Load %s_%d.pth' % (cfg.TRAIN.NET_D, i))
            state_dict = torch.load('%s%d.pth' % (cfg.TRAIN.NET_D, i))
            netsD[i].load_state_dict(state_dict)

    inception_model = INCEPTION_V3()

    if cfg.CUDA:
        netG.cuda()
        for i in range(len(netsD)):
            netsD[i].cuda()
        inception_model = inception_model.cuda()
    inception_model.eval()

    return netG, netsD, len(netsD), inception_model, count 
Example #3
Source File: eval_trainer.py    From Recipe2ImageGAN with MIT License 4 votes vote down vote up
def load_network(gpus):
    netG = G_NET()
    netG.apply(weights_init)
    netG = torch.nn.DataParallel(netG, device_ids=gpus)
    print(netG)

    netsD = []
    if cfg.TREE.BRANCH_NUM > 0:
        netsD.append(D_NET64())
    if cfg.TREE.BRANCH_NUM > 1:
        netsD.append(D_NET128())
    if cfg.TREE.BRANCH_NUM > 2:
        netsD.append(D_NET256())
    if cfg.TREE.BRANCH_NUM > 3:
        netsD.append(D_NET512())
    if cfg.TREE.BRANCH_NUM > 4:
        netsD.append(D_NET1024())
    # TODO: if cfg.TREE.BRANCH_NUM > 5:

    for i in range(len(netsD)):
        netsD[i].apply(weights_init)
        netsD[i] = torch.nn.DataParallel(netsD[i], device_ids=gpus)
        # print(netsD[i])
    print('# of netsD', len(netsD))

    count = 0
    if cfg.TRAIN.NET_G != '':
        state_dict = torch.load(cfg.TRAIN.NET_G)
        netG.load_state_dict(state_dict)
        print('Load ', cfg.TRAIN.NET_G)

        try:
            istart = cfg.TRAIN.NET_G.rfind('_') + 1
            iend = cfg.TRAIN.NET_G.rfind('.')
            count = cfg.TRAIN.NET_G[istart:iend]
            count = int(count)
        except:
            last_run_dir = cfg.DATA_DIR + '/' + cfg.LAST_RUN_DIR + '/Model'
            with open(last_run_dir + '/count.txt', 'r') as f:
                count = int(f.read())

        count = int(count) + 1

    if cfg.TRAIN.NET_D != '':
        for i in range(len(netsD)):
            print('Load %s_%d.pth' % (cfg.TRAIN.NET_D, i))
            state_dict = torch.load('%s%d.pth' % (cfg.TRAIN.NET_D, i))
            netsD[i].load_state_dict(state_dict)

    inception_model = INCEPTION_V3()

    if cfg.CUDA:
        netG.cuda()
        for i in range(len(netsD)):
            netsD[i].cuda()
        inception_model = inception_model.cuda()
    inception_model.eval()

    return netG, netsD, len(netsD), inception_model, count 
Example #4
Source File: trainer.py    From StackGAN-v2 with MIT License 4 votes vote down vote up
def load_network(gpus):
    netG = G_NET()
    netG.apply(weights_init)
    netG = torch.nn.DataParallel(netG, device_ids=gpus)
    print(netG)

    netsD = []
    if cfg.TREE.BRANCH_NUM > 0:
        netsD.append(D_NET64())
    if cfg.TREE.BRANCH_NUM > 1:
        netsD.append(D_NET128())
    if cfg.TREE.BRANCH_NUM > 2:
        netsD.append(D_NET256())
    if cfg.TREE.BRANCH_NUM > 3:
        netsD.append(D_NET512())
    if cfg.TREE.BRANCH_NUM > 4:
        netsD.append(D_NET1024())
    # TODO: if cfg.TREE.BRANCH_NUM > 5:

    for i in range(len(netsD)):
        netsD[i].apply(weights_init)
        netsD[i] = torch.nn.DataParallel(netsD[i], device_ids=gpus)
        # print(netsD[i])
    print('# of netsD', len(netsD))

    count = 0
    if cfg.TRAIN.NET_G != '':
        state_dict = torch.load(cfg.TRAIN.NET_G)
        netG.load_state_dict(state_dict)
        print('Load ', cfg.TRAIN.NET_G)

        istart = cfg.TRAIN.NET_G.rfind('_') + 1
        iend = cfg.TRAIN.NET_G.rfind('.')
        count = cfg.TRAIN.NET_G[istart:iend]
        count = int(count) + 1

    if cfg.TRAIN.NET_D != '':
        for i in range(len(netsD)):
            print('Load %s_%d.pth' % (cfg.TRAIN.NET_D, i))
            state_dict = torch.load('%s%d.pth' % (cfg.TRAIN.NET_D, i))
            netsD[i].load_state_dict(state_dict)

    inception_model = INCEPTION_V3()

    if cfg.CUDA:
        netG.cuda()
        for i in range(len(netsD)):
            netsD[i].cuda()
        inception_model = inception_model.cuda()
    inception_model.eval()

    return netG, netsD, len(netsD), inception_model, count