Python scipy.interpolate.piecewise_polynomial_interpolate() Examples
The following are 6
code examples of scipy.interpolate.piecewise_polynomial_interpolate().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
scipy.interpolate
, or try the search function
.
Example #1
Source File: missing.py From recruit with Apache License 2.0 | 4 votes |
def _from_derivatives(xi, yi, x, order=None, der=0, extrapolate=False): """ Convenience function for interpolate.BPoly.from_derivatives Construct a piecewise polynomial in the Bernstein basis, compatible with the specified values and derivatives at breakpoints. Parameters ---------- xi : array_like sorted 1D array of x-coordinates yi : array_like or list of array-likes yi[i][j] is the j-th derivative known at xi[i] orders : None or int or array_like of ints. Default: None. Specifies the degree of local polynomials. If not None, some derivatives are ignored. der : int or list How many derivatives to extract; None for all potentially nonzero derivatives (that is a number equal to the number of points), or a list of derivatives to extract. This numberincludes the function value as 0th derivative. extrapolate : bool, optional Whether to extrapolate to ouf-of-bounds points based on first and last intervals, or to return NaNs. Default: True. See Also -------- scipy.interpolate.BPoly.from_derivatives Returns ------- y : scalar or array_like The result, of length R or length M or M by R, """ import scipy from scipy import interpolate if LooseVersion(scipy.__version__) < LooseVersion('0.18.0'): try: method = interpolate.piecewise_polynomial_interpolate return method(xi, yi.reshape(-1, 1), x, orders=order, der=der) except AttributeError: pass # return the method for compat with scipy version & backwards compat method = interpolate.BPoly.from_derivatives m = method(xi, yi.reshape(-1, 1), orders=order, extrapolate=extrapolate) return m(x)
Example #2
Source File: missing.py From vnpy_crypto with MIT License | 4 votes |
def _from_derivatives(xi, yi, x, order=None, der=0, extrapolate=False): """ Convenience function for interpolate.BPoly.from_derivatives Construct a piecewise polynomial in the Bernstein basis, compatible with the specified values and derivatives at breakpoints. Parameters ---------- xi : array_like sorted 1D array of x-coordinates yi : array_like or list of array-likes yi[i][j] is the j-th derivative known at xi[i] orders : None or int or array_like of ints. Default: None. Specifies the degree of local polynomials. If not None, some derivatives are ignored. der : int or list How many derivatives to extract; None for all potentially nonzero derivatives (that is a number equal to the number of points), or a list of derivatives to extract. This numberincludes the function value as 0th derivative. extrapolate : bool, optional Whether to extrapolate to ouf-of-bounds points based on first and last intervals, or to return NaNs. Default: True. See Also -------- scipy.interpolate.BPoly.from_derivatives Returns ------- y : scalar or array_like The result, of length R or length M or M by R, """ import scipy from scipy import interpolate if LooseVersion(scipy.__version__) < LooseVersion('0.18.0'): try: method = interpolate.piecewise_polynomial_interpolate return method(xi, yi.reshape(-1, 1), x, orders=order, der=der) except AttributeError: pass # return the method for compat with scipy version & backwards compat method = interpolate.BPoly.from_derivatives m = method(xi, yi.reshape(-1, 1), orders=order, extrapolate=extrapolate) return m(x)
Example #3
Source File: common.py From Computable with MIT License | 4 votes |
def _interpolate_scipy_wrapper(x, y, new_x, method, fill_value=None, bounds_error=False, order=None, **kwargs): """ passed off to scipy.interpolate.interp1d. method is scipy's kind. Returns an array interpolated at new_x. Add any new methods to the list in _clean_interp_method """ try: from scipy import interpolate from pandas import DatetimeIndex except ImportError: raise ImportError('{0} interpolation requires Scipy'.format(method)) new_x = np.asarray(new_x) # ignores some kwargs that could be passed along. alt_methods = { 'barycentric': interpolate.barycentric_interpolate, 'krogh': interpolate.krogh_interpolate, 'piecewise_polynomial': interpolate.piecewise_polynomial_interpolate, } if getattr(x, 'is_all_dates', False): # GH 5975, scipy.interp1d can't hande datetime64s x, new_x = x.values.astype('i8'), new_x.astype('i8') try: alt_methods['pchip'] = interpolate.pchip_interpolate except AttributeError: if method == 'pchip': raise ImportError("Your version of scipy does not support " "PCHIP interpolation.") interp1d_methods = ['nearest', 'zero', 'slinear', 'quadratic', 'cubic', 'polynomial'] if method in interp1d_methods: if method == 'polynomial': method = order terp = interpolate.interp1d(x, y, kind=method, fill_value=fill_value, bounds_error=bounds_error) new_y = terp(new_x) elif method == 'spline': terp = interpolate.UnivariateSpline(x, y, k=order) new_y = terp(new_x) else: method = alt_methods[method] new_y = method(x, y, new_x) return new_y
Example #4
Source File: missing.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 4 votes |
def _from_derivatives(xi, yi, x, order=None, der=0, extrapolate=False): """ Convenience function for interpolate.BPoly.from_derivatives Construct a piecewise polynomial in the Bernstein basis, compatible with the specified values and derivatives at breakpoints. Parameters ---------- xi : array_like sorted 1D array of x-coordinates yi : array_like or list of array-likes yi[i][j] is the j-th derivative known at xi[i] orders : None or int or array_like of ints. Default: None. Specifies the degree of local polynomials. If not None, some derivatives are ignored. der : int or list How many derivatives to extract; None for all potentially nonzero derivatives (that is a number equal to the number of points), or a list of derivatives to extract. This numberincludes the function value as 0th derivative. extrapolate : bool, optional Whether to extrapolate to ouf-of-bounds points based on first and last intervals, or to return NaNs. Default: True. See Also -------- scipy.interpolate.BPoly.from_derivatives Returns ------- y : scalar or array_like The result, of length R or length M or M by R, """ import scipy from scipy import interpolate if LooseVersion(scipy.__version__) < LooseVersion('0.18.0'): try: method = interpolate.piecewise_polynomial_interpolate return method(xi, yi.reshape(-1, 1), x, orders=order, der=der) except AttributeError: pass # return the method for compat with scipy version & backwards compat method = interpolate.BPoly.from_derivatives m = method(xi, yi.reshape(-1, 1), orders=order, extrapolate=extrapolate) return m(x)
Example #5
Source File: missing.py From Splunking-Crime with GNU Affero General Public License v3.0 | 4 votes |
def _from_derivatives(xi, yi, x, order=None, der=0, extrapolate=False): """ Convenience function for interpolate.BPoly.from_derivatives Construct a piecewise polynomial in the Bernstein basis, compatible with the specified values and derivatives at breakpoints. Parameters ---------- xi : array_like sorted 1D array of x-coordinates yi : array_like or list of array-likes yi[i][j] is the j-th derivative known at xi[i] orders : None or int or array_like of ints. Default: None. Specifies the degree of local polynomials. If not None, some derivatives are ignored. der : int or list How many derivatives to extract; None for all potentially nonzero derivatives (that is a number equal to the number of points), or a list of derivatives to extract. This numberincludes the function value as 0th derivative. extrapolate : bool, optional Whether to extrapolate to ouf-of-bounds points based on first and last intervals, or to return NaNs. Default: True. See Also -------- scipy.interpolate.BPoly.from_derivatives Returns ------- y : scalar or array_like The result, of length R or length M or M by R, """ import scipy from scipy import interpolate if LooseVersion(scipy.__version__) < '0.18.0': try: method = interpolate.piecewise_polynomial_interpolate return method(xi, yi.reshape(-1, 1), x, orders=order, der=der) except AttributeError: pass # return the method for compat with scipy version & backwards compat method = interpolate.BPoly.from_derivatives m = method(xi, yi.reshape(-1, 1), orders=order, extrapolate=extrapolate) return m(x)
Example #6
Source File: missing.py From elasticintel with GNU General Public License v3.0 | 4 votes |
def _from_derivatives(xi, yi, x, order=None, der=0, extrapolate=False): """ Convenience function for interpolate.BPoly.from_derivatives Construct a piecewise polynomial in the Bernstein basis, compatible with the specified values and derivatives at breakpoints. Parameters ---------- xi : array_like sorted 1D array of x-coordinates yi : array_like or list of array-likes yi[i][j] is the j-th derivative known at xi[i] orders : None or int or array_like of ints. Default: None. Specifies the degree of local polynomials. If not None, some derivatives are ignored. der : int or list How many derivatives to extract; None for all potentially nonzero derivatives (that is a number equal to the number of points), or a list of derivatives to extract. This numberincludes the function value as 0th derivative. extrapolate : bool, optional Whether to extrapolate to ouf-of-bounds points based on first and last intervals, or to return NaNs. Default: True. See Also -------- scipy.interpolate.BPoly.from_derivatives Returns ------- y : scalar or array_like The result, of length R or length M or M by R, """ import scipy from scipy import interpolate if LooseVersion(scipy.__version__) < '0.18.0': try: method = interpolate.piecewise_polynomial_interpolate return method(xi, yi.reshape(-1, 1), x, orders=order, der=der) except AttributeError: pass # return the method for compat with scipy version & backwards compat method = interpolate.BPoly.from_derivatives m = method(xi, yi.reshape(-1, 1), orders=order, extrapolate=extrapolate) return m(x)