Python caffe2.python.workspace.GlobalInit() Examples
The following are 15
code examples of caffe2.python.workspace.GlobalInit().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
caffe2.python.workspace
, or try the search function
.
Example #1
Source File: eval_seg_cpu.py From models with Apache License 2.0 | 5 votes |
def main(): args = parse_args() num_threads = 8 if not args.parallel else 1 workspace.GlobalInit( [ "caffe2", "--caffe2_log_level=2", "--caffe2_omp_num_threads={}".format(num_threads), "--caffe2_mkl_num_threads={}".format(num_threads), ] ) net = load_model(args) eval_segm_cpu(args, net)
Example #2
Source File: train_net.py From KL-Loss with Apache License 2.0 | 5 votes |
def main(): # Initialize C2 workspace.GlobalInit( ['caffe2', '--caffe2_log_level=0', '--caffe2_gpu_memory_tracking=1'] ) # Set up logging and load config options logger = setup_logging(__name__) logging.getLogger('detectron.roi_data.loader').setLevel(logging.INFO) args = parse_args() logger.info('Called with args:') logger.info(args) if args.cfg_file is not None: merge_cfg_from_file(args.cfg_file) if args.opts is not None: merge_cfg_from_list(args.opts) assert_and_infer_cfg() smi_output, cuda_ver, cudnn_ver = c2_utils.get_nvidia_info() logger.info("cuda version : {}".format(cuda_ver)) logger.info("cudnn version: {}".format(cudnn_ver)) logger.info("nvidia-smi output:\n{}".format(smi_output)) logger.info('Training with config:') logger.info(pprint.pformat(cfg)) # Note that while we set the numpy random seed network training will not be # deterministic in general. There are sources of non-determinism that cannot # be removed with a reasonble execution-speed tradeoff (such as certain # non-deterministic cudnn functions). np.random.seed(cfg.RNG_SEED) # Execute the training run checkpoints = detectron.utils.train.train_model() # Test the trained model if not args.skip_test: test_model(checkpoints['final'], args.single_gpu_testing, args.opts)
Example #3
Source File: eval_seg_cpu.py From inference with Apache License 2.0 | 5 votes |
def main(): args = parse_args() num_threads = 8 workspace.GlobalInit( [ "caffe2", "--caffe2_log_level=2", "--caffe2_omp_num_threads={}".format(num_threads), "--caffe2_mkl_num_threads={}".format(num_threads), ] ) net = load_model(args) eval_segm_cpu(args, net)
Example #4
Source File: train_net.py From Clustered-Object-Detection-in-Aerial-Image with Apache License 2.0 | 5 votes |
def main(): # Initialize C2 workspace.GlobalInit( ['caffe2', '--caffe2_log_level=0', '--caffe2_gpu_memory_tracking=1'] ) # Set up logging and load config options logger = setup_logging(__name__) logging.getLogger('detectron.roi_data.loader').setLevel(logging.INFO) args = parse_args() logger.info('Called with args:') logger.info(args) if args.cfg_file is not None: merge_cfg_from_file(args.cfg_file) if args.opts is not None: merge_cfg_from_list(args.opts) assert_and_infer_cfg() smi_output, cuda_ver, cudnn_ver = c2_utils.get_nvidia_info() logger.info("cuda version : {}".format(cuda_ver)) logger.info("cudnn version: {}".format(cudnn_ver)) logger.info("nvidia-smi output:\n{}".format(smi_output)) logger.info('Training with config:') logger.info(pprint.pformat(cfg)) # Note that while we set the numpy random seed network training will not be # deterministic in general. There are sources of non-determinism that cannot # be removed with a reasonble execution-speed tradeoff (such as certain # non-deterministic cudnn functions). np.random.seed(cfg.RNG_SEED) # Execute the training run checkpoints = detectron.utils.train.train_model() # Test the trained model if not args.skip_test: test_model(checkpoints['final'], args.multi_gpu_testing, args.opts)
Example #5
Source File: train_net.py From seg_every_thing with Apache License 2.0 | 5 votes |
def main(): # Initialize C2 workspace.GlobalInit( ['caffe2', '--caffe2_log_level=0', '--caffe2_gpu_memory_tracking=1'] ) # Set up logging and load config options logger = setup_logging(__name__) logging.getLogger('roi_data.loader').setLevel(logging.INFO) args = parse_args() logger.info('Called with args:') logger.info(args) if args.cfg_file is not None: merge_cfg_from_file(args.cfg_file) if args.opts is not None: merge_cfg_from_list(args.opts) assert_and_infer_cfg() logger.info('Training with config:') logger.info(pprint.pformat(cfg)) # Note that while we set the numpy random seed network training will not be # deterministic in general. There are sources of non-determinism that cannot # be removed with a reasonble execution-speed tradeoff (such as certain # non-deterministic cudnn functions). np.random.seed(cfg.RNG_SEED) # Execute the training run checkpoints = utils.train.train_model() # Test the trained model if not args.skip_test: test_model(checkpoints['final'], args.multi_gpu_testing, args.opts)
Example #6
Source File: train_net.py From masktextspotter.caffe2 with Apache License 2.0 | 5 votes |
def main(): # Initialize C2 workspace.GlobalInit( ['caffe2', '--caffe2_log_level=0', '--caffe2_gpu_memory_tracking=1'] ) # Set up logging and load config options logger = setup_logging(__name__) logging.getLogger('roi_data.loader').setLevel(logging.INFO) args = parse_args() logger.info('Called with args:') logger.info(args) if args.cfg_file is not None: merge_cfg_from_file(args.cfg_file) if args.opts is not None: merge_cfg_from_list(args.opts) assert_and_infer_cfg() logger.info('Training with config:') logger.info(pprint.pformat(cfg)) # Note that while we set the numpy random seed network training will not be # deterministic in general. There are sources of non-determinism that cannot # be removed with a reasonble execution-speed tradeoff (such as certain # non-deterministic cudnn functions). np.random.seed(cfg.RNG_SEED) # Execute the training run checkpoints = train_model() # Test the trained model if not args.skip_test: test_model(checkpoints['final'], args.multi_gpu_testing, args.opts)
Example #7
Source File: train_net.py From Detectron-Cascade-RCNN with Apache License 2.0 | 5 votes |
def main(): # Initialize C2 workspace.GlobalInit( ['caffe2', '--caffe2_log_level=0', '--caffe2_gpu_memory_tracking=1'] ) # Set up logging and load config options logger = setup_logging(__name__) logging.getLogger('detectron.roi_data.loader').setLevel(logging.INFO) args = parse_args() logger.info('Called with args:') logger.info(args) if args.cfg_file is not None: merge_cfg_from_file(args.cfg_file) if args.opts is not None: merge_cfg_from_list(args.opts) assert_and_infer_cfg() smi_output, cuda_ver, cudnn_ver = c2_utils.get_nvidia_info() logger.info("cuda version : {}".format(cuda_ver)) logger.info("cudnn version: {}".format(cudnn_ver)) logger.info("nvidia-smi output:\n{}".format(smi_output)) logger.info('Training with config:') logger.info(pprint.pformat(cfg)) # Note that while we set the numpy random seed network training will not be # deterministic in general. There are sources of non-determinism that cannot # be removed with a reasonble execution-speed tradeoff (such as certain # non-deterministic cudnn functions). np.random.seed(cfg.RNG_SEED) # Execute the training run checkpoints = detectron.utils.train.train_model() # Test the trained model if not args.skip_test: test_model(checkpoints['final'], args.multi_gpu_testing, args.opts)
Example #8
Source File: train_net.py From Detectron with Apache License 2.0 | 5 votes |
def main(): # Initialize C2 workspace.GlobalInit( ['caffe2', '--caffe2_log_level=0', '--caffe2_gpu_memory_tracking=1'] ) # Set up logging and load config options logger = setup_logging(__name__) logging.getLogger('detectron.roi_data.loader').setLevel(logging.INFO) args = parse_args() logger.info('Called with args:') logger.info(args) if args.cfg_file is not None: merge_cfg_from_file(args.cfg_file) if args.opts is not None: merge_cfg_from_list(args.opts) assert_and_infer_cfg() smi_output, cuda_ver, cudnn_ver = c2_utils.get_nvidia_info() logger.info("cuda version : {}".format(cuda_ver)) logger.info("cudnn version: {}".format(cudnn_ver)) logger.info("nvidia-smi output:\n{}".format(smi_output)) logger.info('Training with config:') logger.info(pprint.pformat(cfg)) # Note that while we set the numpy random seed network training will not be # deterministic in general. There are sources of non-determinism that cannot # be removed with a reasonble execution-speed tradeoff (such as certain # non-deterministic cudnn functions). np.random.seed(cfg.RNG_SEED) # Execute the training run checkpoints = detectron.utils.train.train_model() # Test the trained model if not args.skip_test: test_model(checkpoints['final'], args.multi_gpu_testing, args.opts)
Example #9
Source File: train_net.py From Detectron-DA-Faster-RCNN with Apache License 2.0 | 5 votes |
def main(): # Initialize C2 workspace.GlobalInit( ['caffe2', '--caffe2_log_level=0', '--caffe2_gpu_memory_tracking=1'] ) # Set up logging and load config options logger = setup_logging(__name__) logging.getLogger('detectron.roi_data.loader').setLevel(logging.INFO) args = parse_args() logger.info('Called with args:') logger.info(args) if args.cfg_file is not None: merge_cfg_from_file(args.cfg_file) if args.opts is not None: merge_cfg_from_list(args.opts) assert_and_infer_cfg() smi_output, cuda_ver, cudnn_ver = c2_utils.get_nvidia_info() logger.info("cuda version : {}".format(cuda_ver)) logger.info("cudnn version: {}".format(cudnn_ver)) logger.info("nvidia-smi output:\n{}".format(smi_output)) logger.info('Training with config:') logger.info(pprint.pformat(cfg)) # Note that while we set the numpy random seed network training will not be # deterministic in general. There are sources of non-determinism that cannot # be removed with a reasonble execution-speed tradeoff (such as certain # non-deterministic cudnn functions). np.random.seed(cfg.RNG_SEED) # Execute the training run checkpoints = detectron.utils.train.train_model() # Test the trained model if not args.skip_test: test_model(checkpoints['final'], args.multi_gpu_testing, args.opts)
Example #10
Source File: train_net.py From CBNet with Apache License 2.0 | 5 votes |
def main(): # Initialize C2 workspace.GlobalInit( ['caffe2', '--caffe2_log_level=0', '--caffe2_gpu_memory_tracking=1'] ) # Set up logging and load config options logger = setup_logging(__name__) logging.getLogger('detectron.roi_data.loader').setLevel(logging.INFO) args = parse_args() logger.info('Called with args:') logger.info(args) if args.cfg_file is not None: merge_cfg_from_file(args.cfg_file) if args.opts is not None: merge_cfg_from_list(args.opts) assert_and_infer_cfg() smi_output, cuda_ver, cudnn_ver = c2_utils.get_nvidia_info() logger.info("cuda version : {}".format(cuda_ver)) logger.info("cudnn version: {}".format(cudnn_ver)) logger.info("nvidia-smi output:\n{}".format(smi_output)) logger.info('Training with config:') logger.info(pprint.pformat(cfg)) # Note that while we set the numpy random seed network training will not be # deterministic in general. There are sources of non-determinism that cannot # be removed with a reasonble execution-speed tradeoff (such as certain # non-deterministic cudnn functions). np.random.seed(cfg.RNG_SEED) # Execute the training run checkpoints = detectron.utils.train.train_model() # Test the trained model if not args.skip_test: test_model(checkpoints['final'], args.multi_gpu_testing, args.opts)
Example #11
Source File: train_net.py From NucleiDetectron with Apache License 2.0 | 5 votes |
def main(): # Initialize C2 workspace.GlobalInit( ['caffe2', '--caffe2_log_level=0', '--caffe2_gpu_memory_tracking=1'] ) # Set up logging and load config options logger = setup_logging(__name__) logging.getLogger('roi_data.loader').setLevel(logging.INFO) args = parse_args() logger.info('Called with args:') logger.info(args) if args.cfg_file is not None: merge_cfg_from_file(args.cfg_file) if args.opts is not None: merge_cfg_from_list(args.opts) assert_and_infer_cfg() logger.info('Training with config:') logger.info(pprint.pformat(cfg)) # Note that while we set the numpy random seed network training will not be # deterministic in general. There are sources of non-determinism that cannot # be removed with a reasonble execution-speed tradeoff (such as certain # non-deterministic cudnn functions). np.random.seed(cfg.RNG_SEED) # Execute the training run checkpoints = train_model() # Test the trained model if not args.skip_test: test_model(checkpoints['final'], args.multi_gpu_testing, args.opts)
Example #12
Source File: dlrm_s_caffe2.py From optimized-models with Apache License 2.0 | 4 votes |
def __init__( self, m_spa, ln_emb, ln_bot, ln_top, arch_interaction_op, arch_interaction_itself=False, sigmoid_bot=-1, sigmoid_top=-1, save_onnx=False, model=None, tag=None, ndevices=-1, forward_ops=True, enable_prof=False, ): super(DLRM_Net, self).__init__() # init model if model is None: global_init_opt = ["caffe2", "--caffe2_log_level=0"] if enable_prof: global_init_opt += [ "--logtostderr=0", "--log_dir=$HOME", "--caffe2_logging_print_net_summary=1", ] workspace.GlobalInit(global_init_opt) self.set_tags() self.model = model_helper.ModelHelper(name="DLRM", init_params=True) else: # WARNING: assume that workspace and tags have been initialized elsewhere self.set_tags(tag[0], tag[1], tag[2], tag[3], tag[4], tag[5], tag[6], tag[7], tag[8], tag[9]) self.model = model # save arguments self.m_spa = m_spa self.ln_emb = ln_emb self.ln_bot = ln_bot self.ln_top = ln_top self.arch_interaction_op = arch_interaction_op self.arch_interaction_itself = arch_interaction_itself self.sigmoid_bot = sigmoid_bot self.sigmoid_top = sigmoid_top self.save_onnx = save_onnx self.ndevices = ndevices # onnx types and shapes dictionary if self.save_onnx: self.onnx_tsd = {} # create forward operators if forward_ops: if self.ndevices <= 1: return self.create_sequential_forward_ops() else: return self.create_parallel_forward_ops()
Example #13
Source File: dlrm_s_caffe2.py From dlrm with MIT License | 4 votes |
def __init__( self, m_spa, ln_emb, ln_bot, ln_top, arch_interaction_op, arch_interaction_itself=False, sigmoid_bot=-1, sigmoid_top=-1, save_onnx=False, model=None, test_net=None, tag=None, ndevices=-1, forward_ops=True, enable_prof=False, ): super(DLRM_Net, self).__init__() # init model if model is None: global_init_opt = ["caffe2", "--caffe2_log_level=0"] if enable_prof: global_init_opt += [ "--logtostderr=0", "--log_dir=$HOME", "--caffe2_logging_print_net_summary=1", ] workspace.GlobalInit(global_init_opt) self.set_tags() self.model = model_helper.ModelHelper(name="DLRM", init_params=True) self.test_net = None else: # WARNING: assume that workspace and tags have been initialized elsewhere self.set_tags(tag[0], tag[1], tag[2], tag[3], tag[4], tag[5], tag[6], tag[7], tag[8], tag[9]) self.model = model self.test_net = test_net # save arguments self.m_spa = m_spa self.ln_emb = ln_emb self.ln_bot = ln_bot self.ln_top = ln_top self.arch_interaction_op = arch_interaction_op self.arch_interaction_itself = arch_interaction_itself self.sigmoid_bot = sigmoid_bot self.sigmoid_top = sigmoid_top self.save_onnx = save_onnx self.ndevices = ndevices # onnx types and shapes dictionary if self.save_onnx: self.onnx_tsd = {} # create forward operators if forward_ops: if self.ndevices <= 1: return self.create_sequential_forward_ops() else: return self.create_parallel_forward_ops()
Example #14
Source File: convert_pkl_to_pb.py From seg_every_thing with Apache License 2.0 | 4 votes |
def main(): workspace.GlobalInit(['caffe2', '--caffe2_log_level=0']) args = parse_args() logger.info('Called with args:') logger.info(args) if args.cfg_file is not None: merge_cfg_from_file(args.cfg_file) if args.opts is not None: merge_cfg_from_list(args.opts) cfg.NUM_GPUS = 1 assert_and_infer_cfg() logger.info('Conerting model with config:') logger.info(pprint.pformat(cfg)) assert not cfg.MODEL.KEYPOINTS_ON, "Keypoint model not supported." assert not cfg.MODEL.MASK_ON, "Mask model not supported." assert not cfg.FPN.FPN_ON, "FPN not supported." assert not cfg.RETINANET.RETINANET_ON, "RetinaNet model not supported." # load model from cfg model, blobs = load_model(args) net = core.Net('') net.Proto().op.extend(copy.deepcopy(model.net.Proto().op)) net.Proto().external_input.extend( copy.deepcopy(model.net.Proto().external_input)) net.Proto().external_output.extend( copy.deepcopy(model.net.Proto().external_output)) net.Proto().type = args.net_execution_type net.Proto().num_workers = 1 if args.net_execution_type == 'simple' else 4 # Reset the device_option, change to unscope name and replace python operators convert_net(args, net.Proto(), blobs) # add operators for bbox add_bbox_ops(args, net, blobs) if args.fuse_af: print('Fusing affine channel...') net, blobs = mutils.fuse_net_affine( net, blobs) if args.use_nnpack: mutils.update_mobile_engines(net.Proto()) # generate init net empty_blobs = ['data', 'im_info'] init_net = gen_init_net(net, blobs, empty_blobs) if args.device == 'gpu': [net, init_net] = convert_model_gpu(args, net, init_net) net.Proto().name = args.net_name init_net.Proto().name = args.net_name + "_init" if args.test_img is not None: verify_model(args, [net, init_net], args.test_img) _save_models(net, init_net, args)
Example #15
Source File: convert_pkl_to_pb.py From NucleiDetectron with Apache License 2.0 | 4 votes |
def main(): workspace.GlobalInit(['caffe2', '--caffe2_log_level=0']) args = parse_args() logger.info('Called with args:') logger.info(args) if args.cfg_file is not None: merge_cfg_from_file(args.cfg_file) if args.opts is not None: merge_cfg_from_list(args.opts) cfg.NUM_GPUS = 1 assert_and_infer_cfg() logger.info('Conerting model with config:') logger.info(pprint.pformat(cfg)) assert not cfg.MODEL.KEYPOINTS_ON, "Keypoint model not supported." assert not cfg.MODEL.MASK_ON, "Mask model not supported." assert not cfg.FPN.FPN_ON, "FPN not supported." assert not cfg.RETINANET.RETINANET_ON, "RetinaNet model not supported." # load model from cfg model, blobs = load_model(args) net = core.Net('') net.Proto().op.extend(copy.deepcopy(model.net.Proto().op)) net.Proto().external_input.extend( copy.deepcopy(model.net.Proto().external_input)) net.Proto().external_output.extend( copy.deepcopy(model.net.Proto().external_output)) net.Proto().type = args.net_execution_type net.Proto().num_workers = 1 if args.net_execution_type == 'simple' else 4 # Reset the device_option, change to unscope name and replace python operators convert_net(args, net.Proto(), blobs) # add operators for bbox add_bbox_ops(args, net, blobs) if args.fuse_af: print('Fusing affine channel...') net, blobs = mutils.fuse_net_affine( net, blobs) if args.use_nnpack: mutils.update_mobile_engines(net.Proto()) # generate init net empty_blobs = ['data', 'im_info'] init_net = gen_init_net(net, blobs, empty_blobs) if args.device == 'gpu': [net, init_net] = convert_model_gpu(args, net, init_net) net.Proto().name = args.net_name init_net.Proto().name = args.net_name + "_init" if args.test_img is not None: verify_model(args, [net, init_net], args.test_img) _save_models(net, init_net, args)