Python caffe2.python.workspace.ResetWorkspace() Examples
The following are 30
code examples of caffe2.python.workspace.ResetWorkspace().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
caffe2.python.workspace
, or try the search function
.
Example #1
Source File: test_ops_unary.py From ngraph-python with Apache License 2.0 | 6 votes |
def test_exp(): workspace.ResetWorkspace() shape = [2, 7] data = [ 1., 2., 3., 4., 1., 2., 3., 1., 2., 3., 4., 1., 2., 3. ] expected = [ [2.71828, 7.3890, 20.08553, 54.59815, 2.71828, 7.3890, 20.08553], [2.71828, 7.3890, 20.08553, 54.59815, 2.71828, 7.3890, 20.08553], ] run_all_close_compare_initiated_with_random_gauss('Exp', shape=shape, data=data, expected=expected)
Example #2
Source File: test_ops_nn.py From ngraph-python with Apache License 2.0 | 6 votes |
def test_SquaredL2Distance(): workspace.ResetWorkspace() shape = (10, 10) net = core.Net("net") Y = net.GivenTensorFill([], "Y", shape=shape, values=np.random.uniform(-1, 1, shape)) T = net.GivenTensorFill([], "T", shape=shape, values=np.random.uniform(-1, 1, shape)) net.SquaredL2Distance([Y, T], "dist") # Execute via Caffe2 workspace.RunNetOnce(net) # Import caffe2 network into ngraph importer = C2Importer() importer.parse_net_def(net.Proto(), verbose=False) # Get handle f_ng = importer.get_op_handle("dist") # Execute with ExecutorFactory() as ex: f_result = ex.executor(f_ng)() assert(np.allclose(f_result, workspace.FetchBlob("dist"), equal_nan=False))
Example #3
Source File: test_ops_nn.py From ngraph-python with Apache License 2.0 | 6 votes |
def test_AveragedLoss(): workspace.ResetWorkspace() shape = (32,) net = core.Net("net") X = net.GivenTensorFill([], "Y", shape=shape, values=np.random.uniform(-1, 1, shape)) X.AveragedLoss([], ["loss"]) # Execute via Caffe2 workspace.RunNetOnce(net) # Import caffe2 network into ngraph importer = C2Importer() importer.parse_net_def(net.Proto(), verbose=False) # Get handle f_ng = importer.get_op_handle("loss") # Execute with ExecutorFactory() as ex: f_result = ex.executor(f_ng)() assert(np.allclose(f_result, workspace.FetchBlob("loss"), equal_nan=False))
Example #4
Source File: test_ops_constant.py From ngraph-python with Apache License 2.0 | 6 votes |
def test_constant(): workspace.ResetWorkspace() shape = [10, 10] val = random.random() net = core.Net("net") net.ConstantFill([], ["Y"], shape=shape, value=val, run_once=0, name="Y") # Execute via Caffe2 workspace.RunNetOnce(net) # Import caffe2 network into ngraph importer = C2Importer() importer.parse_net_def(net.Proto(), verbose=False) # Get handle f_ng = importer.get_op_handle("Y") # Execute with ExecutorFactory() as ex: f_result = ex.executor(f_ng)() # compare Caffe2 and ngraph results assert(np.ma.allequal(f_result, workspace.FetchBlob("Y"))) assert(np.isclose(f_result[0][0], val, atol=1e-6, rtol=0))
Example #5
Source File: test_benchmarks.py From dlcookbook-dlbs with Apache License 2.0 | 6 votes |
def test_inference(self): """caffe2_benchmarks -> TestCaffe2Benchmarks::test_inference [Caffe2 CPU/GPU inference.]""" print("Testing inference") for params in itertools.product(self.models, self.batch_sizes, self.devices): if params[0] in self.gpu_skip_models: continue model = model_helper.ModelHelper(name=params[0]) name, times = benchmark_inference( model, {'model':params[0], 'phase':'inference', 'batch_size':params[1], 'num_batches':self.num_batches, 'num_warmup_batches':self.num_warmup_iters, 'num_gpus':self.num_gpus, 'device':params[2], 'dtype':'float', 'enable_tensor_core':False} ) self.assertEqual(len(times), self.num_batches) print("model=%s, name=%s, batch=%d, device=%s, time=%f" %\ (params[0], name, params[1], params[2], 1000.0*np.mean(times))) workspace.ResetWorkspace()
Example #6
Source File: test_benchmarks.py From dlcookbook-dlbs with Apache License 2.0 | 6 votes |
def test_training_cpu(self): """caffe2_benchmarks -> TestCaffe2Benchmarks::test_training_cpu [Caffe2 CPU training.]""" print("Testing CPU training") for params in itertools.product(self.models, self.batch_sizes): model = model_helper.ModelHelper(name=params[0]) name, times = benchmark_training( model, {'model':params[0], 'phase':'training', 'batch_size':params[1], 'num_batches':self.num_batches, 'num_warmup_batches':self.num_warmup_iters, 'num_gpus':0, 'device':'cpu', 'dtype':'float', 'enable_tensor_core':False} ) self.assertEqual(len(times), self.num_batches) print("model=%s, name=%s, batch=%d, device=cpu, time=%f" %\ (params[0], name, params[1], 1000.0*np.mean(times))) workspace.ResetWorkspace()
Example #7
Source File: test_benchmarks.py From dlcookbook-dlbs with Apache License 2.0 | 6 votes |
def test_training_gpu(self): """caffe2_benchmarks -> TestCaffe2Benchmarks::test_training_gpu [Caffe2 GPU training.]""" print("Testing GPU training") for params in itertools.product(self.models, self.batch_sizes, self.gpus): if params[0] in self.gpu_skip_models: continue model = model_helper.ModelHelper(name=params[0]) name, times = benchmark_training( model, {'model':params[0], 'phase':'training', 'batch_size':params[1], 'num_batches':self.num_batches, 'num_warmup_batches':self.num_warmup_iters, 'num_gpus':len(params[2].split()), 'device':'gpu', 'dtype':'float', 'enable_tensor_core':False} ) self.assertEqual(len(times), self.num_batches) print("model=%s, name=%s, batch=%d, gpus=%s, time=%f" %\ (params[0], name, params[1], params[2], 1000.0*np.mean(times))) workspace.ResetWorkspace()
Example #8
Source File: run_add5_op.py From tutorials with Apache License 2.0 | 6 votes |
def run_add5_and_add5gradient_op(device): # clear the workspace before running the operator workspace.ResetWorkspace() add5 = core.CreateOperator("Add5", ["X"], ["Y"], device_option=device) print("==> Running Add5 op:") workspace.FeedBlob("X", (np.random.rand(5, 5)), device_option=device) print("Input of Add5: ", workspace.FetchBlob("X")) workspace.RunOperatorOnce(add5) print("Output of Add5: ", workspace.FetchBlob("Y")) print("\n\n==> Running Add5Gradient op:") print("Input of Add5Gradient: ", workspace.FetchBlob("Y")) add5gradient = core.CreateOperator("Add5Gradient", ["Y"], ["Z"], device_option=device) workspace.RunOperatorOnce(add5gradient) print("Output of Add5Gradient: ", workspace.FetchBlob("Z"))
Example #9
Source File: Multi-GPU_Training.py From tutorials with Apache License 2.0 | 6 votes |
def accuracy(model): accuracy = [] prefix = model.net.Proto().name for device in model._devices: accuracy.append( np.asscalar(workspace.FetchBlob("gpu_{}/{}_accuracy".format(device, prefix)))) return np.average(accuracy) # ## Part 11: Run Multi-GPU Training and Get Test Results # You've come a long way. Now is the time to see it all pay off. Since you already ran ResNet once, you can glance at the code below and run it. The big difference this time is your model is parallelized! # # The additional components at the end deal with accuracy so you may want to dig into those specifics as a bonus task. You can try it again: just adjust the `num_epochs` value below, run the block, and see the results. You can also go back to Part 10 to reinitialize the model, and run this step again. (You may want to add `workspace.ResetWorkspace()` before you run the new models again.) # # Go back and check the images/sec from when you ran single GPU. Note how you can scale up with a small amount of overhead. # # ### Task: How many GPUs would it take to train ImageNet in under a minute? # In[ ]: # Start looping through epochs where we run the batches of images to cover the entire dataset # Usually you would want to run a lot more epochs to increase your model's accuracy
Example #10
Source File: caffe2_network.py From deep500 with BSD 3-Clause "New" or "Revised" License | 5 votes |
def _teardown(self): workspace.ResetWorkspace()
Example #11
Source File: train_net.py From Clustered-Object-Detection-in-Aerial-Image with Apache License 2.0 | 5 votes |
def test_model(model_file, multi_gpu_testing, opts=None): """Test a model.""" # Clear memory before inference workspace.ResetWorkspace() # Run inference run_inference( model_file, multi_gpu_testing=multi_gpu_testing, check_expected_results=True, )
Example #12
Source File: test_ops_constant.py From ngraph-python with Apache License 2.0 | 5 votes |
def test_gaussianfill(): workspace.ResetWorkspace() # Size of test matrix N = 100 shape = [N, N] net = core.Net("net") net.GaussianFill([], ["Y"], shape=shape, mean=0.0, std=1.0, name="Y") # Execute via Caffe2 workspace.RunNetOnce(net) # Import caffe2 network into ngraph importer = C2Importer() importer.parse_net_def(net.Proto(), verbose=False) # Get handle f_ng = importer.get_op_handle("Y") # Execute with ExecutorFactory() as ex: f_result = ex.executor(f_ng)() # get caffe result caffe_res = workspace.FetchBlob("Y") # Elementwise difference of the two random matrixes difference_res = caffe_res - f_result # standard deviation of Difference Matrix diffe_res_std = difference_res.std() # testing can only be approximate (so in rare cases may fail!!) # if fails once try to re-run a couple of times to make sure there is a problem) # the difference must be still gaussian and P(|m'-m|)<3*std = 99.73%, and # std(m) = std/N, having N*N elements assert(np.isclose(difference_res.mean(), 0, atol=3 * diffe_res_std / N, rtol=0))
Example #13
Source File: convert_pkl_to_pb.py From seg_every_thing with Apache License 2.0 | 5 votes |
def run_model_cfg(args, im, check_blobs): workspace.ResetWorkspace() model, _ = load_model(args) with c2_utils.NamedCudaScope(0): cls_boxes, cls_segms, cls_keyps = test_engine.im_detect_all( model, im, None, None, ) boxes, segms, keypoints, classes = vis_utils.convert_from_cls_format( cls_boxes, cls_segms, cls_keyps) # sort the results based on score for comparision boxes, segms, keypoints, classes = _sort_results( boxes, segms, keypoints, classes) # write final results back to workspace def _ornone(res): return np.array(res) if res is not None else np.array([], dtype=np.float32) with c2_utils.NamedCudaScope(0): workspace.FeedBlob(core.ScopedName('result_boxes'), _ornone(boxes)) workspace.FeedBlob(core.ScopedName('result_segms'), _ornone(segms)) workspace.FeedBlob(core.ScopedName('result_keypoints'), _ornone(keypoints)) workspace.FeedBlob(core.ScopedName('result_classids'), _ornone(classes)) # get result blobs with c2_utils.NamedCudaScope(0): ret = _get_result_blobs(check_blobs) return ret
Example #14
Source File: train_net.py From seg_every_thing with Apache License 2.0 | 5 votes |
def test_model(model_file, multi_gpu_testing, opts=None): """Test a model.""" # Clear memory before inference workspace.ResetWorkspace() # Run inference run_inference( model_file, multi_gpu_testing=multi_gpu_testing, check_expected_results=True, )
Example #15
Source File: train_net.py From DetectAndTrack with Apache License 2.0 | 5 votes |
def test_model(model_file, multi_gpu_testing, opts=None): # All arguments to inference functions are passed via cfg cfg.TEST.WEIGHTS = model_file # Clear memory before inference workspace.ResetWorkspace() # Run inference test_net.main(multi_gpu_testing=multi_gpu_testing)
Example #16
Source File: shared.py From detectron2 with Apache License 2.0 | 5 votes |
def __enter__(self): self.org_ws = workspace.CurrentWorkspace() if self.ws_name is not None: workspace.SwitchWorkspace(self.ws_name, True) if self.is_reset: workspace.ResetWorkspace() return workspace
Example #17
Source File: shared.py From detectron2 with Apache License 2.0 | 5 votes |
def __exit__(self, *args): if self.is_cleanup: workspace.ResetWorkspace() if self.ws_name is not None: workspace.SwitchWorkspace(self.org_ws)
Example #18
Source File: train_net.py From masktextspotter.caffe2 with Apache License 2.0 | 5 votes |
def test_model(model_file, multi_gpu_testing, opts=None): """Test a model.""" # All arguments to inference functions are passed via cfg cfg.TEST.WEIGHTS = model_file # Clear memory before inference workspace.ResetWorkspace() # Run inference test_net.main(multi_gpu_testing=multi_gpu_testing)
Example #19
Source File: convert_pkl_to_pb.py From Detectron-Cascade-RCNN with Apache License 2.0 | 5 votes |
def run_model_cfg(args, im, check_blobs): workspace.ResetWorkspace() model, _ = load_model(args) with c2_utils.NamedCudaScope(0): cls_boxes, cls_segms, cls_keyps = test_engine.im_detect_all( model, im, None, None, ) boxes, segms, keypoints, classes = vis_utils.convert_from_cls_format( cls_boxes, cls_segms, cls_keyps) # sort the results based on score for comparision boxes, segms, keypoints, classes = _sort_results( boxes, segms, keypoints, classes) # write final results back to workspace def _ornone(res): return np.array(res) if res is not None else np.array([], dtype=np.float32) with c2_utils.NamedCudaScope(0): workspace.FeedBlob(core.ScopedName('result_boxes'), _ornone(boxes)) workspace.FeedBlob(core.ScopedName('result_segms'), _ornone(segms)) workspace.FeedBlob(core.ScopedName('result_keypoints'), _ornone(keypoints)) workspace.FeedBlob(core.ScopedName('result_classids'), _ornone(classes)) # get result blobs with c2_utils.NamedCudaScope(0): ret = _get_result_blobs(check_blobs) return ret
Example #20
Source File: train_net.py From Detectron-Cascade-RCNN with Apache License 2.0 | 5 votes |
def test_model(model_file, multi_gpu_testing, opts=None): """Test a model.""" # Clear memory before inference workspace.ResetWorkspace() # Run inference run_inference( model_file, multi_gpu_testing=multi_gpu_testing, check_expected_results=True, )
Example #21
Source File: convert_pkl_to_pb.py From Detectron with Apache License 2.0 | 5 votes |
def run_model_cfg(args, im, check_blobs): workspace.ResetWorkspace() model, _ = load_model(args) with c2_utils.NamedCudaScope(0): cls_boxes, cls_segms, cls_keyps = test_engine.im_detect_all( model, im, None, None ) boxes, segms, keypoints, classes = vis_utils.convert_from_cls_format( cls_boxes, cls_segms, cls_keyps ) # sort the results based on score for comparision boxes, segms, keypoints, classes = _sort_results(boxes, segms, keypoints, classes) # write final results back to workspace def _ornone(res): return np.array(res) if res is not None else np.array([], dtype=np.float32) with c2_utils.NamedCudaScope(0): workspace.FeedBlob(core.ScopedName("result_boxes"), _ornone(boxes)) workspace.FeedBlob(core.ScopedName("result_segms"), _ornone(segms)) workspace.FeedBlob(core.ScopedName("result_keypoints"), _ornone(keypoints)) workspace.FeedBlob(core.ScopedName("result_classids"), _ornone(classes)) # get result blobs with c2_utils.NamedCudaScope(0): ret = _get_result_blobs(check_blobs) return ret
Example #22
Source File: train_net.py From Detectron with Apache License 2.0 | 5 votes |
def test_model(model_file, multi_gpu_testing, opts=None): """Test a model.""" # Clear memory before inference workspace.ResetWorkspace() # Run inference run_inference( model_file, multi_gpu_testing=multi_gpu_testing, check_expected_results=True, )
Example #23
Source File: convert_pkl_to_pb.py From Detectron-DA-Faster-RCNN with Apache License 2.0 | 5 votes |
def run_model_cfg(args, im, check_blobs): workspace.ResetWorkspace() model, _ = load_model(args) with c2_utils.NamedCudaScope(0): cls_boxes, cls_segms, cls_keyps = test_engine.im_detect_all( model, im, None, None, ) boxes, segms, keypoints, classes = vis_utils.convert_from_cls_format( cls_boxes, cls_segms, cls_keyps) # sort the results based on score for comparision boxes, segms, keypoints, classes = _sort_results( boxes, segms, keypoints, classes) # write final results back to workspace def _ornone(res): return np.array(res) if res is not None else np.array([], dtype=np.float32) with c2_utils.NamedCudaScope(0): workspace.FeedBlob(core.ScopedName('result_boxes'), _ornone(boxes)) workspace.FeedBlob(core.ScopedName('result_segms'), _ornone(segms)) workspace.FeedBlob(core.ScopedName('result_keypoints'), _ornone(keypoints)) workspace.FeedBlob(core.ScopedName('result_classids'), _ornone(classes)) # get result blobs with c2_utils.NamedCudaScope(0): ret = _get_result_blobs(check_blobs) return ret
Example #24
Source File: train_net.py From Detectron-DA-Faster-RCNN with Apache License 2.0 | 5 votes |
def test_model(model_file, multi_gpu_testing, opts=None): """Test a model.""" # Clear memory before inference workspace.ResetWorkspace() # Run inference run_inference( model_file, multi_gpu_testing=multi_gpu_testing, check_expected_results=True, )
Example #25
Source File: convert_pkl_to_pb.py From CBNet with Apache License 2.0 | 5 votes |
def run_model_cfg(args, im, check_blobs): workspace.ResetWorkspace() model, _ = load_model(args) with c2_utils.NamedCudaScope(0): cls_boxes, cls_segms, cls_keyps = test_engine.im_detect_all( model, im, None, None, ) boxes, segms, keypoints, classes = vis_utils.convert_from_cls_format( cls_boxes, cls_segms, cls_keyps) # sort the results based on score for comparision boxes, segms, keypoints, classes = _sort_results( boxes, segms, keypoints, classes) # write final results back to workspace def _ornone(res): return np.array(res) if res is not None else np.array([], dtype=np.float32) with c2_utils.NamedCudaScope(0): workspace.FeedBlob(core.ScopedName('result_boxes'), _ornone(boxes)) workspace.FeedBlob(core.ScopedName('result_segms'), _ornone(segms)) workspace.FeedBlob(core.ScopedName('result_keypoints'), _ornone(keypoints)) workspace.FeedBlob(core.ScopedName('result_classids'), _ornone(classes)) # get result blobs with c2_utils.NamedCudaScope(0): ret = _get_result_blobs(check_blobs) return ret
Example #26
Source File: train_net.py From CBNet with Apache License 2.0 | 5 votes |
def test_model(model_file, multi_gpu_testing, opts=None): """Test a model.""" # Clear memory before inference workspace.ResetWorkspace() # Run inference run_inference( model_file, multi_gpu_testing=multi_gpu_testing, check_expected_results=True, )
Example #27
Source File: test_benchmarks.py From dlcookbook-dlbs with Apache License 2.0 | 5 votes |
def setUp(self): workspace.ResetWorkspace() self.models = [ 'deep_mnist', 'eng_acoustic_model', 'sensor_net', 'alexnet', 'vgg11', 'vgg13', 'vgg16', 'vgg19', 'googlenet', 'resnet18', 'resnet34', 'resnet50', 'resnet101', 'resnet152', 'resnet200', 'resnet269'] self.batch_sizes = [1, 2, 4] self.num_warmup_iters = 1 self.num_batches = 1 self.num_gpus = 1 self.devices = ['gpu', 'cpu'] self.gpus = ['0'] self.gpu_skip_models = ['resnet200', 'resnet269'] # May be too deep to fit in my GPU memory
Example #28
Source File: update-models-from-caffe2.py From onnx-fb-universe with MIT License | 5 votes |
def generate_test_output_data(caffe2_init_net, caffe2_predict_net, inputs): p = c2_workspace.Predictor(caffe2_init_net, caffe2_predict_net) inputs_map = {input[0]:input[1] for input in inputs} output = p.run(inputs_map) c2_workspace.ResetWorkspace() return output
Example #29
Source File: convert_pkl_to_pb.py From NucleiDetectron with Apache License 2.0 | 5 votes |
def run_model_cfg(args, im, check_blobs): workspace.ResetWorkspace() model, _ = load_model(args) with c2_utils.NamedCudaScope(0): cls_boxes, cls_segms, cls_keyps = test_engine.im_detect_all( model, im, None, None, ) boxes, segms, keypoints, classes = vis_utils.convert_from_cls_format( cls_boxes, cls_segms, cls_keyps) # sort the results based on score for comparision boxes, segms, keypoints, classes = _sort_results( boxes, segms, keypoints, classes) # write final results back to workspace def _ornone(res): return np.array(res) if res is not None else np.array([], dtype=np.float32) with c2_utils.NamedCudaScope(0): workspace.FeedBlob(core.ScopedName('result_boxes'), _ornone(boxes)) workspace.FeedBlob(core.ScopedName('result_segms'), _ornone(segms)) workspace.FeedBlob(core.ScopedName('result_keypoints'), _ornone(keypoints)) workspace.FeedBlob(core.ScopedName('result_classids'), _ornone(classes)) # get result blobs with c2_utils.NamedCudaScope(0): ret = _get_result_blobs(check_blobs) return ret
Example #30
Source File: train_net.py From NucleiDetectron with Apache License 2.0 | 5 votes |
def test_model(model_file, multi_gpu_testing, opts=None): """Test a model.""" # All arguments to inference functions are passed via cfg cfg.TEST.WEIGHTS = model_file # Clear memory before inference workspace.ResetWorkspace() # Run inference test_net.main(multi_gpu_testing=multi_gpu_testing)