Python caffe2.python.workspace.CreateBlob() Examples
The following are 30
code examples of caffe2.python.workspace.CreateBlob().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
caffe2.python.workspace
, or try the search function
.
Example #1
Source File: test_loader.py From Clustered-Object-Detection-in-Aerial-Image with Apache License 2.0 | 6 votes |
def get_net(data_loader, name): logger = logging.getLogger(__name__) blob_names = data_loader.get_output_names() net = core.Net(name) net.type = 'dag' for gpu_id in range(cfg.NUM_GPUS): with core.NameScope('gpu_{}'.format(gpu_id)): with core.DeviceScope(muji.OnGPU(gpu_id)): for blob_name in blob_names: blob = core.ScopedName(blob_name) workspace.CreateBlob(blob) net.DequeueBlobs( data_loader._blobs_queue_name, blob_names) logger.info("Protobuf:\n" + str(net.Proto())) return net
Example #2
Source File: test_loader.py From Detectron-Cascade-RCNN with Apache License 2.0 | 6 votes |
def get_net(data_loader, name): logger = logging.getLogger(__name__) blob_names = data_loader.get_output_names() net = core.Net(name) net.type = 'dag' for gpu_id in range(cfg.NUM_GPUS): with core.NameScope('gpu_{}'.format(gpu_id)): with core.DeviceScope(muji.OnGPU(gpu_id)): for blob_name in blob_names: blob = core.ScopedName(blob_name) workspace.CreateBlob(blob) net.DequeueBlobs( data_loader._blobs_queue_name, blob_names) logger.info("Protobuf:\n" + str(net.Proto())) return net
Example #3
Source File: test_loader.py From Detectron with Apache License 2.0 | 6 votes |
def get_net(data_loader, name): logger = logging.getLogger(__name__) blob_names = data_loader.get_output_names() net = core.Net(name) net.type = 'dag' for gpu_id in range(cfg.NUM_GPUS): with core.NameScope('gpu_{}'.format(gpu_id)): with core.DeviceScope(muji.OnGPU(gpu_id)): for blob_name in blob_names: blob = core.ScopedName(blob_name) workspace.CreateBlob(blob) net.DequeueBlobs( data_loader._blobs_queue_name, blob_names) logger.info("Protobuf:\n" + str(net.Proto())) return net
Example #4
Source File: test_loader.py From masktextspotter.caffe2 with Apache License 2.0 | 6 votes |
def get_net(data_loader, name): logger = logging.getLogger(__name__) blob_names = data_loader.get_output_names() net = core.Net(name) net.type = 'dag' for gpu_id in range(cfg.NUM_GPUS): with core.NameScope('gpu_{}'.format(gpu_id)): with core.DeviceScope(muji.OnGPU(gpu_id)): for blob_name in blob_names: blob = core.ScopedName(blob_name) workspace.CreateBlob(blob) net.DequeueBlobs( data_loader._blobs_queue_name, blob_names) logger.info("Protobuf:\n" + str(net.Proto())) return net
Example #5
Source File: test_loader.py From Detectron-DA-Faster-RCNN with Apache License 2.0 | 6 votes |
def get_net(data_loader, name): logger = logging.getLogger(__name__) blob_names = data_loader.get_output_names() net = core.Net(name) net.type = 'dag' for gpu_id in range(cfg.NUM_GPUS): with core.NameScope('gpu_{}'.format(gpu_id)): with core.DeviceScope(muji.OnGPU(gpu_id)): for blob_name in blob_names: blob = core.ScopedName(blob_name) workspace.CreateBlob(blob) net.DequeueBlobs( data_loader._blobs_queue_name, blob_names) logger.info("Protobuf:\n" + str(net.Proto())) return net
Example #6
Source File: test_loader.py From seg_every_thing with Apache License 2.0 | 6 votes |
def get_net(data_loader, name): logger = logging.getLogger(__name__) blob_names = data_loader.get_output_names() net = core.Net(name) net.type = 'dag' for gpu_id in range(cfg.NUM_GPUS): with core.NameScope('gpu_{}'.format(gpu_id)): with core.DeviceScope(muji.OnGPU(gpu_id)): for blob_name in blob_names: blob = core.ScopedName(blob_name) workspace.CreateBlob(blob) net.DequeueBlobs( data_loader._blobs_queue_name, blob_names) logger.info("Protobuf:\n" + str(net.Proto())) return net
Example #7
Source File: test_loader.py From CBNet with Apache License 2.0 | 6 votes |
def get_net(data_loader, name): logger = logging.getLogger(__name__) blob_names = data_loader.get_output_names() net = core.Net(name) net.type = 'dag' for gpu_id in range(cfg.NUM_GPUS): with core.NameScope('gpu_{}'.format(gpu_id)): with core.DeviceScope(muji.OnGPU(gpu_id)): for blob_name in blob_names: blob = core.ScopedName(blob_name) workspace.CreateBlob(blob) net.DequeueBlobs( data_loader._blobs_queue_name, blob_names) logger.info("Protobuf:\n" + str(net.Proto())) return net
Example #8
Source File: test_loader.py From NucleiDetectron with Apache License 2.0 | 6 votes |
def get_net(data_loader, name): logger = logging.getLogger(__name__) blob_names = data_loader.get_output_names() net = core.Net(name) net.type = 'dag' for gpu_id in range(cfg.NUM_GPUS): with core.NameScope('gpu_{}'.format(gpu_id)): with core.DeviceScope(muji.OnGPU(gpu_id)): for blob_name in blob_names: blob = core.ScopedName(blob_name) workspace.CreateBlob(blob) net.DequeueBlobs( data_loader._blobs_queue_name, blob_names) logger.info("Protobuf:\n" + str(net.Proto())) return net
Example #9
Source File: test_engine.py From DetectAndTrack with Apache License 2.0 | 6 votes |
def initialize_model_from_cfg(): def create_input_blobs(net_def): for op in net_def.op: for blob_in in op.input: if not workspace.HasBlob(blob_in): workspace.CreateBlob(blob_in) model = model_builder.create( cfg.MODEL.TYPE, train=False, init_params=cfg.TEST.INIT_RANDOM_VARS_BEFORE_LOADING) model_builder.add_inputs(model) if cfg.TEST.INIT_RANDOM_VARS_BEFORE_LOADING: workspace.RunNetOnce(model.param_init_net) net_utils.initialize_from_weights_file( model, cfg.TEST.WEIGHTS, broadcast=False) create_input_blobs(model.net.Proto()) workspace.CreateNet(model.net) workspace.CreateNet(model.conv_body_net) if cfg.MODEL.MASK_ON: create_input_blobs(model.mask_net.Proto()) workspace.CreateNet(model.mask_net) if cfg.MODEL.KEYPOINTS_ON: create_input_blobs(model.keypoint_net.Proto()) workspace.CreateNet(model.keypoint_net) return model
Example #10
Source File: test_loader.py From KL-Loss with Apache License 2.0 | 6 votes |
def get_net(data_loader, name): logger = logging.getLogger(__name__) blob_names = data_loader.get_output_names() net = core.Net(name) net.type = 'dag' for gpu_id in range(cfg.NUM_GPUS): with core.NameScope('gpu_{}'.format(gpu_id)): with core.DeviceScope(muji.OnGPU(gpu_id)): for blob_name in blob_names: blob = core.ScopedName(blob_name) workspace.CreateBlob(blob) net.DequeueBlobs( data_loader._blobs_queue_name, blob_names) logger.info("Protobuf:\n" + str(net.Proto())) return net
Example #11
Source File: test_loader.py From DetectAndTrack with Apache License 2.0 | 6 votes |
def get_net(data_loader, name): logger = logging.getLogger(__name__) blob_names = data_loader.get_output_names() net = core.Net(name) net.type = 'dag' for gpu_id in range(cfg.NUM_GPUS): with core.NameScope('gpu_{}'.format(gpu_id)): with core.DeviceScope(muji.OnGPU(gpu_id)): for blob_name in blob_names: blob = core.ScopedName(blob_name) workspace.CreateBlob(blob) net.DequeueBlobs( data_loader._blobs_queue_name, blob_names) logger.info("Protobuf:\n" + str(net.Proto())) return net
Example #12
Source File: model_builder.py From Detectron-DA-Faster-RCNN with Apache License 2.0 | 5 votes |
def add_inference_inputs(model): """Create network input blobs used for inference.""" def create_input_blobs_for_net(net_def): for op in net_def.op: for blob_in in op.input: if not workspace.HasBlob(blob_in): workspace.CreateBlob(blob_in) create_input_blobs_for_net(model.net.Proto()) if cfg.MODEL.MASK_ON: create_input_blobs_for_net(model.mask_net.Proto()) if cfg.MODEL.KEYPOINTS_ON: create_input_blobs_for_net(model.keypoint_net.Proto()) # ---------------------------------------------------------------------------- # # ********************** DEPRECATED FUNCTIONALITY BELOW ********************** # # ---------------------------------------------------------------------------- # # ---------------------------------------------------------------------------- # # Hardcoded functions to create various types of common models # # *** This type of model definition is deprecated *** # *** Use the generic composable versions instead *** # # ---------------------------------------------------------------------------- #
Example #13
Source File: loader.py From Detectron with Apache License 2.0 | 5 votes |
def create_enqueue_blobs(self): blob_names = self.get_output_names() enqueue_blob_names = [ '{}_enqueue_{}'.format(b, self._loader_id) for b in blob_names ] for gpu_id in range(self._num_gpus): with c2_utils.NamedCudaScope(gpu_id): for blob in enqueue_blob_names: workspace.CreateBlob(core.ScopedName(blob)) return enqueue_blob_names
Example #14
Source File: model_convert_utils.py From Detectron with Apache License 2.0 | 5 votes |
def create_input_blobs_for_net(net_def): for op in net_def.op: for blob_in in op.input: if not workspace.HasBlob(blob_in): workspace.CreateBlob(blob_in)
Example #15
Source File: model_builder.py From Detectron with Apache License 2.0 | 5 votes |
def add_training_inputs(model, roidb=None): """Create network input ops and blobs used for training. To be called *after* model_builder.create(). """ # Implementation notes: # Typically, one would create the input ops and then the rest of the net. # However, creating the input ops depends on loading the dataset, which # can take a few minutes for COCO. # We prefer to avoid waiting so debugging can fail fast. # Thus, we create the net *without input ops* prior to loading the # dataset, and then add the input ops after loading the dataset. # Since we defer input op creation, we need to do a little bit of surgery # to place the input ops at the start of the network op list. assert model.train, 'Training inputs can only be added to a trainable model' if roidb is not None: # To make debugging easier you can set cfg.DATA_LOADER.NUM_THREADS = 1 model.roi_data_loader = RoIDataLoader( roidb, num_loaders=cfg.DATA_LOADER.NUM_THREADS, minibatch_queue_size=cfg.DATA_LOADER.MINIBATCH_QUEUE_SIZE, blobs_queue_capacity=cfg.DATA_LOADER.BLOBS_QUEUE_CAPACITY ) orig_num_op = len(model.net._net.op) blob_names = roi_data_minibatch.get_minibatch_blob_names(is_training=True) for gpu_id in range(cfg.NUM_GPUS): with c2_utils.NamedCudaScope(gpu_id): for blob_name in blob_names: workspace.CreateBlob(core.ScopedName(blob_name)) model.net.DequeueBlobs( model.roi_data_loader._blobs_queue_name, blob_names ) # A little op surgery to move input ops to the start of the net diff = len(model.net._net.op) - orig_num_op new_op = model.net._net.op[-diff:] + model.net._net.op[:-diff] del model.net._net.op[:] model.net._net.op.extend(new_op)
Example #16
Source File: model_builder.py From Detectron with Apache License 2.0 | 5 votes |
def add_inference_inputs(model): """Create network input blobs used for inference.""" def create_input_blobs_for_net(net_def): for op in net_def.op: for blob_in in op.input: if not workspace.HasBlob(blob_in): workspace.CreateBlob(blob_in) create_input_blobs_for_net(model.net.Proto()) if cfg.MODEL.MASK_ON: create_input_blobs_for_net(model.mask_net.Proto()) if cfg.MODEL.KEYPOINTS_ON: create_input_blobs_for_net(model.keypoint_net.Proto()) # ---------------------------------------------------------------------------- # # ********************** DEPRECATED FUNCTIONALITY BELOW ********************** # # ---------------------------------------------------------------------------- # # ---------------------------------------------------------------------------- # # Hardcoded functions to create various types of common models # # *** This type of model definition is deprecated *** # *** Use the generic composable versions instead *** # # ---------------------------------------------------------------------------- #
Example #17
Source File: model_builder.py From DetectAndTrack with Apache License 2.0 | 5 votes |
def add_train_inputs(model): blob_names = model.roi_data_loader.get_output_names() for blob_name in blob_names: workspace.CreateBlob(core.ScopedName(blob_name)) model.net.DequeueBlobs(model.roi_data_loader._blobs_queue_name, blob_names)
Example #18
Source File: loader.py From Detectron-DA-Faster-RCNN with Apache License 2.0 | 5 votes |
def create_enqueue_blobs(self): blob_names = self.get_output_names() enqueue_blob_names = [ '{}_enqueue_{}'.format(b, self._loader_id) for b in blob_names ] for gpu_id in range(self._num_gpus): with c2_utils.NamedCudaScope(gpu_id): for blob in enqueue_blob_names: workspace.CreateBlob(core.ScopedName(blob)) return enqueue_blob_names
Example #19
Source File: model_convert_utils.py From Detectron-DA-Faster-RCNN with Apache License 2.0 | 5 votes |
def create_input_blobs_for_net(net_def): for op in net_def.op: for blob_in in op.input: if not workspace.HasBlob(blob_in): workspace.CreateBlob(blob_in)
Example #20
Source File: model_convert_utils.py From DetectAndTrack with Apache License 2.0 | 5 votes |
def create_input_blobs_for_net(net_def): for op in net_def.op: for blob_in in op.input: if not workspace.HasBlob(blob_in): workspace.CreateBlob(blob_in)
Example #21
Source File: model_builder.py From Detectron-DA-Faster-RCNN with Apache License 2.0 | 5 votes |
def add_training_inputs(model, source_roidb=None, target_roidb=None): """Create network input ops and blobs used for training. To be called *after* model_builder.create(). """ # Implementation notes: # Typically, one would create the input ops and then the rest of the net. # However, creating the input ops depends on loading the dataset, which # can take a few minutes for COCO. # We prefer to avoid waiting so debugging can fail fast. # Thus, we create the net *without input ops* prior to loading the # dataset, and then add the input ops after loading the dataset. # Since we defer input op creation, we need to do a little bit of surgery # to place the input ops at the start of the network op list. assert model.train, 'Training inputs can only be added to a trainable model' if source_roidb is not None: # To make debugging easier you can set cfg.DATA_LOADER.NUM_THREADS = 1 model.roi_data_loader = RoIDataLoader( source_roidb=source_roidb, target_roidb=target_roidb, num_loaders=cfg.DATA_LOADER.NUM_THREADS, minibatch_queue_size=cfg.DATA_LOADER.MINIBATCH_QUEUE_SIZE, blobs_queue_capacity=cfg.DATA_LOADER.BLOBS_QUEUE_CAPACITY ) orig_num_op = len(model.net._net.op) blob_names = roi_data_minibatch.get_minibatch_blob_names(is_training=True) for gpu_id in range(cfg.NUM_GPUS): with c2_utils.NamedCudaScope(gpu_id): for blob_name in blob_names: workspace.CreateBlob(core.ScopedName(blob_name)) model.net.DequeueBlobs( model.roi_data_loader._blobs_queue_name, blob_names ) # A little op surgery to move input ops to the start of the net diff = len(model.net._net.op) - orig_num_op new_op = model.net._net.op[-diff:] + model.net._net.op[:-diff] del model.net._net.op[:] model.net._net.op.extend(new_op)
Example #22
Source File: model_convert_utils.py From NucleiDetectron with Apache License 2.0 | 5 votes |
def create_input_blobs_for_net(net_def): for op in net_def.op: for blob_in in op.input: if not workspace.HasBlob(blob_in): workspace.CreateBlob(blob_in)
Example #23
Source File: loader.py From CBNet with Apache License 2.0 | 5 votes |
def create_enqueue_blobs(self): blob_names = self.get_output_names() enqueue_blob_names = [ '{}_enqueue_{}'.format(b, self._loader_id) for b in blob_names ] for gpu_id in range(self._num_gpus): with c2_utils.NamedCudaScope(gpu_id): for blob in enqueue_blob_names: workspace.CreateBlob(core.ScopedName(blob)) return enqueue_blob_names
Example #24
Source File: infer.py From caffe2-pose-estimation with Apache License 2.0 | 5 votes |
def add_inference_inputs(model): """Create network input blobs used for inference.""" def create_input_blobs_for_net(net_def): for op in net_def.op: for blob_in in op.input: if not workspace.HasBlob(blob_in): workspace.CreateBlob(blob_in) create_input_blobs_for_net(model.net.Proto())
Example #25
Source File: model_builder.py From Detectron-Cascade-RCNN with Apache License 2.0 | 5 votes |
def add_inference_inputs(model): """Create network input blobs used for inference.""" def create_input_blobs_for_net(net_def): for op in net_def.op: for blob_in in op.input: if not workspace.HasBlob(blob_in): workspace.CreateBlob(blob_in) create_input_blobs_for_net(model.net.Proto()) if cfg.MODEL.MASK_ON: create_input_blobs_for_net(model.mask_net.Proto()) if cfg.MODEL.KEYPOINTS_ON: create_input_blobs_for_net(model.keypoint_net.Proto()) # ---------------------------------------------------------------------------- # # ********************** DEPRECATED FUNCTIONALITY BELOW ********************** # # ---------------------------------------------------------------------------- # # ---------------------------------------------------------------------------- # # Hardcoded functions to create various types of common models # # *** This type of model definition is deprecated *** # *** Use the generic composable versions instead *** # # ---------------------------------------------------------------------------- #
Example #26
Source File: model_convert_utils.py From CBNet with Apache License 2.0 | 5 votes |
def create_input_blobs_for_net(net_def): for op in net_def.op: for blob_in in op.input: if not workspace.HasBlob(blob_in): workspace.CreateBlob(blob_in)
Example #27
Source File: model_builder.py From CBNet with Apache License 2.0 | 5 votes |
def add_training_inputs(model, roidb=None): """Create network input ops and blobs used for training. To be called *after* model_builder.create(). """ # Implementation notes: # Typically, one would create the input ops and then the rest of the net. # However, creating the input ops depends on loading the dataset, which # can take a few minutes for COCO. # We prefer to avoid waiting so debugging can fail fast. # Thus, we create the net *without input ops* prior to loading the # dataset, and then add the input ops after loading the dataset. # Since we defer input op creation, we need to do a little bit of surgery # to place the input ops at the start of the network op list. assert model.train, 'Training inputs can only be added to a trainable model' if roidb is not None: # To make debugging easier you can set cfg.DATA_LOADER.NUM_THREADS = 1 model.roi_data_loader = RoIDataLoader( roidb, num_loaders=cfg.DATA_LOADER.NUM_THREADS, minibatch_queue_size=cfg.DATA_LOADER.MINIBATCH_QUEUE_SIZE, blobs_queue_capacity=cfg.DATA_LOADER.BLOBS_QUEUE_CAPACITY ) orig_num_op = len(model.net._net.op) blob_names = roi_data_minibatch.get_minibatch_blob_names(is_training=True) for gpu_id in range(cfg.NUM_GPUS): with c2_utils.NamedCudaScope(gpu_id): for blob_name in blob_names: workspace.CreateBlob(core.ScopedName(blob_name)) model.net.DequeueBlobs( model.roi_data_loader._blobs_queue_name, blob_names ) # A little op surgery to move input ops to the start of the net diff = len(model.net._net.op) - orig_num_op new_op = model.net._net.op[-diff:] + model.net._net.op[:-diff] del model.net._net.op[:] model.net._net.op.extend(new_op)
Example #28
Source File: model_builder.py From CBNet with Apache License 2.0 | 5 votes |
def add_inference_inputs(model): """Create network input blobs used for inference.""" def create_input_blobs_for_net(net_def): for op in net_def.op: for blob_in in op.input: if not workspace.HasBlob(blob_in): workspace.CreateBlob(blob_in) create_input_blobs_for_net(model.net.Proto()) if cfg.MODEL.MASK_ON: create_input_blobs_for_net(model.mask_net.Proto()) if cfg.MODEL.KEYPOINTS_ON: create_input_blobs_for_net(model.keypoint_net.Proto()) # ---------------------------------------------------------------------------- # # ********************** DEPRECATED FUNCTIONALITY BELOW ********************** # # ---------------------------------------------------------------------------- # # ---------------------------------------------------------------------------- # # Hardcoded functions to create various types of common models # # *** This type of model definition is deprecated *** # *** Use the generic composable versions instead *** # # ---------------------------------------------------------------------------- #
Example #29
Source File: model_builder.py From NucleiDetectron with Apache License 2.0 | 5 votes |
def add_training_inputs(model, roidb=None): """Create network input ops and blobs used for training. To be called *after* model_builder.create(). """ # Implementation notes: # Typically, one would create the input ops and then the rest of the net. # However, creating the input ops depends on loading the dataset, which # can take a few minutes for COCO. # We prefer to avoid waiting so debugging can fail fast. # Thus, we create the net *without input ops* prior to loading the # dataset, and then add the input ops after loading the dataset. # Since we defer input op creation, we need to do a little bit of surgery # to place the input ops at the start of the network op list. assert model.train, 'Training inputs can only be added to a trainable model' if roidb is not None: # To make debugging easier you can set cfg.DATA_LOADER.NUM_THREADS = 1 model.roi_data_loader = RoIDataLoader( roidb, num_loaders=cfg.DATA_LOADER.NUM_THREADS, num_augmentation_processes=cfg.DATA_LOADER.PROCESS_POOL_COUNT ) orig_num_op = len(model.net._net.op) blob_names = roi_data.minibatch.get_minibatch_blob_names( is_training=True ) for gpu_id in range(cfg.NUM_GPUS): with c2_utils.NamedCudaScope(gpu_id): for blob_name in blob_names: workspace.CreateBlob(core.ScopedName(blob_name)) model.net.DequeueBlobs( model.roi_data_loader._blobs_queue_name, blob_names ) # A little op surgery to move input ops to the start of the net diff = len(model.net._net.op) - orig_num_op new_op = model.net._net.op[-diff:] + model.net._net.op[:-diff] del model.net._net.op[:] model.net._net.op.extend(new_op)
Example #30
Source File: loader.py From NucleiDetectron with Apache License 2.0 | 5 votes |
def create_enqueue_blobs(self): blob_names = self.get_output_names() enqueue_blob_names = [ '{}_enqueue_{}'.format(b, self._loader_id) for b in blob_names ] for gpu_id in range(self._num_gpus): with c2_utils.NamedCudaScope(gpu_id): for blob in enqueue_blob_names: workspace.CreateBlob(core.ScopedName(blob)) return enqueue_blob_names