Python statsmodels.tsa.arima_model.ARIMA Examples
The following are 15
code examples of statsmodels.tsa.arima_model.ARIMA().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
statsmodels.tsa.arima_model
, or try the search function
.
Example #1
Source File: stock_modeler.py From stock-analysis with MIT License | 6 votes |
def arima(df, *, ar, i, ma, fit=True): """ Create an ARIMA object for modeling time series. Parameters: - df: The dataframe containing the stock closing price as `close` and with a time index. - ar: The autoregressive order (p). - i: The differenced order (q). - ma: The moving average order (d). - fit: Whether or not to return the fitted model, defaults to True. Returns: A statsmodels ARIMA object which you can use to fit and predict. """ arima_model = ARIMA( df.close.asfreq('B').fillna(method='ffill'), order=(ar, i, ma) ) return arima_model.fit() if fit else arima_model
Example #2
Source File: testScoreWithAdapaStatsmodels.py From nyoka with Apache License 2.0 | 6 votes |
def test_01(self): ts_data = self.getData() f_name='arima201_c_car_sold.pmml' model = ARIMA(ts_data,order=(2,0,1)) result = model.fit(trend = 'c', method = 'css') StatsmodelsToPmml(result, f_name, conf_int=[95]) model_name = self.adapa_utility.upload_to_zserver(f_name) z_pred = self.adapa_utility.score_in_zserver(model_name, {'h':5},'TS') z_forecasts = np.array(list(z_pred['outputs'][0]['predicted_'+ts_data.squeeze().name].values())) model_forecasts = result.forecast(5)[0] z_conf_int_95_upper = np.array(list(z_pred['outputs'][0]['conf_int_95_upper_'+ts_data.squeeze().name].values())) model_conf_int_95_upper = result.forecast(5)[-1][:,-1] z_conf_int_95_lower = np.array(list(z_pred['outputs'][0]['conf_int_95_lower_'+ts_data.squeeze().name].values())) model_conf_int_95_lower = result.forecast(5)[-1][:,0] self.assertEqual(np.allclose(z_forecasts, model_forecasts),True) self.assertEqual(np.allclose(z_conf_int_95_upper, model_conf_int_95_upper),True) self.assertEqual(np.allclose(z_conf_int_95_lower, model_conf_int_95_lower),True)
Example #3
Source File: timeseries_arima.py From ad_examples with MIT License | 6 votes |
def rolling_forecast_ARIMA(train, test, order, nsteps=1): tseries = [x for x in train] rets = [] errors = [] tindex = pd.to_datetime(np.arange(1, len(train) + nsteps + 1)) for i in range(nsteps): with warnings.catch_warnings(): warnings.simplefilter("ignore") # hack the time index, else ARIMA will not run model_fit, residuals = fit_ARIMA(tseries, dates=tindex[0:len(tseries)], order=order) if len(order) == 3: # ARIMA forecast forecasts = model_fit.forecast() val = forecasts[0] else: # SARIMA forecast val = model_fit.forecast() val = val[0] rets.append(val) errors.append(test[i] - val) tseries.append(test[i]) return np.array(rets, dtype=float), np.array(errors, dtype=float)
Example #4
Source File: econometrics.py From gs-quant with Apache License 2.0 | 6 votes |
def _evaluate_arima_model(X: Union[pd.Series, pd.DataFrame], arima_order: Tuple[int, int, int], train_size: Union[float, int, None], freq: str) -> Tuple[float, dict]: train_size = int(len(X) * 0.75) if train_size is None else int(len(X) * train_size) \ if isinstance(train_size, float) else train_size train, test = X[:train_size].astype(float), X[train_size:].astype(float) model = ARIMA(train, order=arima_order, freq=freq) model_fit = model.fit(disp=False, method='css', trend='nc') # calculate test error yhat = model_fit.forecast(len(test))[0] error = mse(test, yhat) return error, model_fit
Example #5
Source File: statsmodels.py From MLPrimitives with MIT License | 6 votes |
def __init__(self, p, d, q, steps): """Initialize the ARIMA object. Args: p (int): Integer denoting the order of the autoregressive model. d (int): Integer denoting the degree of differencing. q (int): Integer denoting the order of the moving-average model. steps (int): Integer denoting the number of time steps to predict ahead. """ self.p = p self.d = d self.q = q self.steps = steps
Example #6
Source File: stock_modeler.py From stock-analysis with MIT License | 5 votes |
def arima_predictions(df, arima_model_fitted, start, end, plot=True, **kwargs): """ Get ARIMA predictions as pandas Series or plot. Parameters: - df: The dataframe for the stock. - arima_model_fitted: The fitted ARIMA model. - start: The start date for the predictions. - end: The end date for the predictions. - plot: Whether or not to plot the result, default is True meaning the plot is returned instead of the pandas Series containing the predictions. - kwargs: Additional keyword arguments to pass to the pandas `plot()` method. Returns: A matplotlib Axes object or predictions as a Series depending on the value of the `plot` argument. """ predicted_changes = arima_model_fitted.predict( start=start, end=end ) predictions = pd.Series( predicted_changes, name='close' ).cumsum() + df.last('1D').close.iat[0] if plot: ax = df.close.plot(**kwargs) predictions.plot(ax=ax, style='r:', label='arima predictions') ax.legend() return ax if plot else predictions
Example #7
Source File: test_sarimax.py From vnpy_crypto with MIT License | 5 votes |
def setup_class(cls): cls.true = results_sarimax.wpi1_stationary endog = cls.true['data'] cls.model_a = arima.ARIMA(endog, order=(1, 1, 1)) cls.result_a = cls.model_a.fit(disp=-1) cls.model_b = sarimax.SARIMAX(endog, order=(1, 1, 1), trend='c', simple_differencing=True, hamilton_representation=True) cls.result_b = cls.model_b.fit(disp=-1)
Example #8
Source File: test_sarimax.py From vnpy_crypto with MIT License | 5 votes |
def test_mle(self): # ARIMA estimates the mean of the process, whereas SARIMAX estimates # the intercept. Convert the mean to intercept to compare params_a = self.result_a.params.copy() params_a[0] = (1 - params_a[1]) * params_a[0] assert_allclose(self.result_b.params[:-1], params_a, atol=5e-5)
Example #9
Source File: timeseries_arima.py From ad_examples with MIT License | 5 votes |
def fit_ARIMA(series, dates=None, order=(0, 0, 1)): """Fits either an ARIMA or a SARIMA model depending on whether order is 3 or 4 dimensional :param series: :param dates: :param order: tuple If this has 3 elements, an ARIMA model will be fit If this has 4 elements, the fourth is the seasonal factor and SARIMA will be fit :return: fitted model, array of residuals """ with warnings.catch_warnings(): warnings.simplefilter("ignore") # hack the time index, else ARIMA will not run if dates is None: dates = pd.to_datetime(np.arange(1, len(series)+1)) if len(order) > 3: seasonal_order = (0, 0, 0, order[3]) arima_order = (order[0], order[1], order[2]) model = SARIMAX(series, dates=dates, order=arima_order, seasonal_order=seasonal_order) model_fit = model.fit(disp=0) residuals = model_fit.resid else: model = ARIMA(series, dates=dates, order=order) model_fit = model.fit(disp=0) residuals = model_fit.resid return model_fit, residuals
Example #10
Source File: arima.py From pyFTS with GNU General Public License v3.0 | 5 votes |
def train(self, data, **kwargs): if 'order' in kwargs: order = kwargs.pop('order') self._decompose_order(order) if self.indexer is not None: data = self.indexer.get_data(data) try: self.model = stats_arima(data, order=(self.p, self.d, self.q)) self.model_fit = self.model.fit(disp=0) except Exception as ex: print(ex) self.model_fit = None
Example #11
Source File: econometrics.py From gs-quant with Apache License 2.0 | 5 votes |
def transform(self, X: Union[pd.Series, pd.DataFrame]) -> pd.DataFrame: """ Transform a series based on the best ARIMA found from fit(). Does not support tranformation using MA components. :param X: time series to be operated on; required parameter :return: DataFrame """ X = X.to_frame() if isinstance(X, pd.Series) else X return pd.DataFrame({s_id: self._arima_transform_series(self.best_params[s_id]) for s_id in X.columns})
Example #12
Source File: statsmodels.py From MLPrimitives with MIT License | 5 votes |
def predict(self, X): """Predict values using the initialized object. Args: X (ndarray): N-dimensional array containing the input sequences for the model. Returns: ndarray: N-dimensional array containing the predictions for each input sequence. """ arima_results = list() dimensions = len(X.shape) if dimensions > 2: raise ValueError("Only 1D o 2D arrays are supported") if dimensions == 1 or X.shape[1] == 1: X = np.expand_dims(X, axis=0) num_sequences = len(X) for sequence in range(num_sequences): arima = arima_model.ARIMA(X[sequence], order=(self.p, self.d, self.q)) arima_fit = arima.fit(disp=0) arima_results.append(arima_fit.forecast(self.steps)[0]) arima_results = np.asarray(arima_results) if dimensions == 1: arima_results = arima_results[0] return arima_results
Example #13
Source File: test_sarimax.py From vnpy_crypto with MIT License | 4 votes |
def test_arima000(): from statsmodels.tsa.statespace.tools import compatibility_mode # Test an ARIMA(0,0,0) with measurement error model (i.e. just estimating # a variance term) np.random.seed(328423) nobs = 50 endog = pd.DataFrame(np.random.normal(size=nobs)) mod = sarimax.SARIMAX(endog, order=(0, 0, 0), measurement_error=False) res = mod.smooth(mod.start_params) assert_allclose(res.smoothed_state, endog.T) # ARIMA(0, 1, 0) mod = sarimax.SARIMAX(endog, order=(0, 1, 0), measurement_error=False) res = mod.smooth(mod.start_params) assert_allclose(res.smoothed_state[1:, 1:], endog.diff()[1:].T) # SARIMA(0, 1, 0)x(0, 1, 0, 1) mod = sarimax.SARIMAX(endog, order=(0, 1, 0), measurement_error=True, seasonal_order=(0, 1, 0, 1)) res = mod.smooth(mod.start_params) # Exogenous variables error = np.random.normal(size=nobs) endog = np.ones(nobs) * 10 + error exog = np.ones(nobs) # We need univariate filtering here, to guarantee we won't hit singular # forecast error covariance matrices. if compatibility_mode: return # OLS mod = sarimax.SARIMAX(endog, order=(0, 0, 0), exog=exog) mod.ssm.filter_univariate = True res = mod.smooth([10., 1.]) assert_allclose(res.smoothed_state[0], error, atol=1e-10) # RLS mod = sarimax.SARIMAX(endog, order=(0, 0, 0), exog=exog, mle_regression=False) mod.ssm.filter_univariate = True mod.initialize_known([0., 10.], np.diag([1., 0.])) res = mod.smooth([1.]) assert_allclose(res.smoothed_state[0], error, atol=1e-10) assert_allclose(res.smoothed_state[1], 10, atol=1e-10) # RLS + TVP mod = sarimax.SARIMAX(endog, order=(0, 0, 0), exog=exog, mle_regression=False, time_varying_regression=True) mod.ssm.filter_univariate = True mod.initialize_known([10.], np.diag([0.])) res = mod.smooth([0., 1.]) assert_allclose(res.smoothed_state[0], 10, atol=1e-10)
Example #14
Source File: econometrics.py From gs-quant with Apache License 2.0 | 4 votes |
def fit(self, X: Union[pd.Series, pd.DataFrame], train_size: Union[float, int, None] = None, p_vals: list = (0, 1, 2), d_vals: list = (0, 1, 2), q_vals: list = (0, 1, 2), freq: str = None) -> 'arima': """ Train a combination of ARIMA models. If pandas DataFrame, finds the best arima model parameters for each column. If pandas Series, finds the best arima model parameters for the series. :param X: time series to be operated on; required parameter :param train_size: if float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the train split. If int, represents the absolute number of train samples. If None, the value is automatically set 0.75 :p_vals: number of autoregressive terms to search; default is [0,1,2] :d_vals: number of differences to search; default is [0,1,2] :q_vals: number of lagged forecast to search; always [0,1,2] :freq: frequency of time series, default is None :return: self """ if isinstance(X, pd.Series): X = X.to_frame() for series_id in X.columns: series = X[series_id] best_score = float('inf') best_order = None best_const = None best_ar_coef = None best_ma_coef = None best_resid = None for order in list(itertools.product(*[p_vals, d_vals, q_vals])): try: error, model_fit = self._evaluate_arima_model(series, order, train_size, freq) if error < best_score: best_score = error best_order = order best_const = model_fit.params.to_dict().get('const', 0) best_ar_coef = model_fit.arparams best_ma_coef = model_fit.maparams best_resid = model_fit.resid except Exception as e: print(' {}'.format(e)) continue p, d, q = best_order self.best_params[series_id] = ARIMABestParams(freq, p, d, q, best_const, best_ar_coef, best_ma_coef, best_resid, series) return self
Example #15
Source File: ARIMA.py From Splunking-Crime with GNU Affero General Public License v3.0 | 4 votes |
def _fit(self, X): for variable in self.feature_variables: df_util.assert_field_present(X, variable) df_util.drop_unused_fields(X, self.feature_variables) df_util.assert_any_fields(X) df_util.assert_any_rows(X) if X[self.time_series].dtype == object: raise ValueError('%s contains non-numeric data. ARIMA only accepts numeric data.' % self.time_series) X[self.time_series] = X[self.time_series].astype(float) try: self.estimator = _ARIMA(X[self.time_series].values, order=self.out_params['model_params']['order'], missing=self.out_params['model_params']['missing']).fit(disp=False) except ValueError as e: if 'stationary' in e.message: raise ValueError("The computed initial AR coefficients are not " "stationary. You should induce stationarity by choosing a different model order.") elif 'invertible' in e.message: raise ValueError("The computed initial MA coefficients are not invertible. " "You should induce invertibility by choosing a different model order.") else: cexc.log_traceback() raise ValueError(e) except MissingDataError: raise RuntimeError('Empty or null values are not supported in %s. ' 'If using timechart, try using a larger span.' % self.time_series) except Exception as e: cexc.log_traceback() raise RuntimeError(e) # Saving the _time but not as a part of the ARIMA structure but as new attribute for ARIMA. if '_time' in self.feature_variables: freq = self._find_freq(X['_time'].values, self.freq_threshold) self.estimator.datetime_information = dict(ver=0, _time=X['_time'].values, freq=freq, # in seconds (unix epoch) first_timestamp=X['_time'].values[0], last_timestamp=X['_time'].values[-1], length=len(X)) else: self.estimator.datetime_information = dict(ver=0, _time=None, freq=None, first_time=None, last_time=None, length=len(X))