Python bokeh.models.DataRange1d() Examples
The following are 8
code examples of bokeh.models.DataRange1d().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
bokeh.models
, or try the search function
.
Example #1
Source File: temperature.py From bigquery-bokeh-dashboard with Apache License 2.0 | 7 votes |
def make_plot(self, dataframe): self.source = ColumnDataSource(data=dataframe) self.plot = figure( x_axis_type="datetime", plot_width=600, plot_height=300, tools='', toolbar_location=None) self.plot.quad( top='max_temp', bottom='min_temp', left='left', right='right', color=Blues4[2], source=self.source, legend='Magnitude') line = self.plot.line( x='date', y='avg_temp', line_width=3, color=Blues4[1], source=self.source, legend='Average') hover_tool = HoverTool(tooltips=[ ('Value', '$y'), ('Date', '@date_readable'), ], renderers=[line]) self.plot.tools.append(hover_tool) self.plot.xaxis.axis_label = None self.plot.yaxis.axis_label = None self.plot.axis.axis_label_text_font_style = 'bold' self.plot.x_range = DataRange1d(range_padding=0.0) self.plot.grid.grid_line_alpha = 0.3 self.title = Paragraph(text=TITLE) return column(self.title, self.plot)
Example #2
Source File: main.py From bokeh with BSD 3-Clause "New" or "Revised" License | 6 votes |
def make_plot(source, title): plot = figure(x_axis_type="datetime", plot_width=800, tools="", toolbar_location=None) plot.title.text = title plot.quad(top='record_max_temp', bottom='record_min_temp', left='left', right='right', color=Blues4[2], source=source, legend="Record") plot.quad(top='average_max_temp', bottom='average_min_temp', left='left', right='right', color=Blues4[1], source=source, legend="Average") plot.quad(top='actual_max_temp', bottom='actual_min_temp', left='left', right='right', color=Blues4[0], alpha=0.5, line_color="black", source=source, legend="Actual") # fixed attributes plot.xaxis.axis_label = None plot.yaxis.axis_label = "Temperature (F)" plot.axis.axis_label_text_font_style = "bold" plot.x_range = DataRange1d(range_padding=0.0) plot.grid.grid_line_alpha = 0.3 return plot
Example #3
Source File: precipitation.py From bigquery-bokeh-dashboard with Apache License 2.0 | 6 votes |
def make_plot(self, dataframe): self.source = ColumnDataSource(data=dataframe) self.plot = figure( x_axis_type="datetime", plot_width=400, plot_height=300, tools='', toolbar_location=None) vbar = self.plot.vbar( x='date', top='prcp', width=1, color='#fdae61', source=self.source) hover_tool = HoverTool(tooltips=[ ('Value', '$y'), ('Date', '@date_readable'), ], renderers=[vbar]) self.plot.tools.append(hover_tool) self.plot.xaxis.axis_label = None self.plot.yaxis.axis_label = None self.plot.axis.axis_label_text_font_style = 'bold' self.plot.x_range = DataRange1d(range_padding=0.0) self.plot.grid.grid_line_alpha = 0.3 self.title = Paragraph(text=TITLE) return column(self.title, self.plot)
Example #4
Source File: axes.py From chartify with Apache License 2.0 | 6 votes |
def __init__(self, chart): self._chart = chart self._y_range_name = 'second_y' self._chart.figure.extra_y_ranges = { self._y_range_name: DataRange1d(bounds='auto') } # Add the appropriate axis type to the figure. axis_class = LinearAxis if self._chart._second_y_axis_type == 'log': axis_class = LogAxis self._chart.figure.add_layout( axis_class(y_range_name=self._y_range_name), 'right') self._y_axis_index = 1 self._y_range = self._chart.figure.extra_y_ranges[self._y_range_name] self._chart.style._apply_settings('second_y_axis')
Example #5
Source File: stock.py From osqf2015 with MIT License | 5 votes |
def create_stock(cls, source): # xdr1 = DataRange1d(sources=[source.columns("x")]) # ydr1 = DataRange1d(sources=[source.columns("y")]) # plot1 = figure(title="Outliers", x_range=xdr1, y_range=ydr1, plot_width=650, plot_height=400) stock_plot = figure(title="", plot_width=650, plot_height=400) # stock_plot.tools.append(TapTool(plot=stock_plot)) # stock_plot.line(x="x", y="values", size=12, color="blue", line_dash=[2, 4], source=source) return stock_plot # plot1.scatter(x="x", y="y", size="size", fill_color="red", source=source)
Example #6
Source File: figureenvelope.py From backtrader_plotting with GNU General Public License v3.0 | 5 votes |
def plot_volume(self, data: bt.AbstractDataBase, alpha=1.0, extra_axis=False): """extra_axis displays a second axis (for overlay on data plotting)""" source_id = FigureEnvelope._source_id(data) self._add_columns([(source_id + 'volume', np.float64), (source_id + 'colors_volume', np.object)]) kwargs = {'fill_alpha': alpha, 'line_alpha': alpha, 'name': 'Volume', 'legend_label': 'Volume'} ax_formatter = NumeralTickFormatter(format=self._scheme.number_format) if extra_axis: source_data_axis = 'axvol' self.figure.extra_y_ranges = {source_data_axis: DataRange1d( range_padding=1.0/self._scheme.volscaling, start=0, )} # use colorup ax_color = convert_color(self._scheme.volup) ax = LinearAxis(y_range_name=source_data_axis, formatter=ax_formatter, axis_label_text_color=ax_color, axis_line_color=ax_color, major_label_text_color=ax_color, major_tick_line_color=ax_color, minor_tick_line_color=ax_color) self.figure.add_layout(ax, 'left') kwargs['y_range_name'] = source_data_axis else: self.figure.yaxis.formatter = ax_formatter vbars = self.figure.vbar('index', get_bar_width(), f'{source_id}volume', 0, source=self._cds, fill_color=f'{source_id}colors_volume', line_color="black", **kwargs) # make sure the new axis only auto-scales to the volume data if extra_axis: self.figure.extra_y_ranges['axvol'].renderers = [vbars] self._hoverc.add_hovertip("Volume", f"@{source_id}volume{{({self._scheme.number_format})}}", data)
Example #7
Source File: parallelplot.py From arviz with Apache License 2.0 | 4 votes |
def plot_parallel( ax, diverging_mask, _posterior, var_names, figsize, backend_config, backend_kwargs, show ): """Bokeh parallel plot.""" if backend_config is None: backend_config = {} backend_config = { **backend_kwarg_defaults( ("bounds_x_range", "plot.bokeh.bounds_x_range"), ("bounds_y_range", "plot.bokeh.bounds_y_range"), ), **backend_config, } if backend_kwargs is None: backend_kwargs = {} backend_kwargs = { **backend_kwarg_defaults(("dpi", "plot.bokeh.figure.dpi"),), **backend_kwargs, } dpi = backend_kwargs.pop("dpi") if ax is None: backend_kwargs.setdefault("width", int(figsize[0] * dpi)) backend_kwargs.setdefault("height", int(figsize[1] * dpi)) ax = bkp.figure(**backend_kwargs) non_div = list(_posterior[:, ~diverging_mask].T) x_non_div = [list(range(len(non_div[0]))) for _ in range(len(non_div))] ax.multi_line( x_non_div, non_div, line_color="black", line_alpha=0.05, ) if np.any(diverging_mask): div = list(_posterior[:, diverging_mask].T) x_non_div = [list(range(len(div[0]))) for _ in range(len(div))] ax.multi_line(x_non_div, div, color="lime", line_width=1, line_alpha=0.5) ax.xaxis.ticker = FixedTicker(ticks=list(range(len(var_names)))) ax.xaxis.major_label_overrides = dict(zip(map(str, range(len(var_names))), map(str, var_names))) ax.xaxis.major_label_orientation = np.pi / 2 ax.x_range = DataRange1d(bounds=backend_config["bounds_x_range"], min_interval=2) ax.y_range = DataRange1d(bounds=backend_config["bounds_y_range"], min_interval=5) show_layout(ax, show) return ax
Example #8
Source File: bokeh.py From histogrammar-python with Apache License 2.0 | 4 votes |
def plot(xLabel='x',yLabel='y',*args): from bokeh.models import DataRange1d, Plot, LinearAxis, Grid from bokeh.models import PanTool, WheelZoomTool xdr = DataRange1d() ydr = DataRange1d() plot = Plot(x_range=xdr, y_range=ydr, min_border=80) extra = list() if type(xLabel) is not str and type(yLabel) is not str: extra.append(xLabel) extra.append(yLabel) xLabel = 'x' yLabel = 'y' elif type(xLabel) is not str: extra.append(xLabel) xLabel = 'x' elif type(yLabel) is not str: extra.append(yLabel) yLabel = 'y' args = extra+list(args) for renderer in args: if type(renderer) is not list: plot.renderers.append(renderer) else: plot.renderers.extend(renderer) #axes xaxis = LinearAxis(axis_label=xLabel) plot.add_layout(xaxis, 'below') yaxis = LinearAxis(axis_label=yLabel) plot.add_layout(yaxis, 'left') #add grid to the plot #plot.add_layout(Grid(dimension=0, ticker=xaxis.ticker)) #plot.add_layout(Grid(dimension=1, ticker=yaxis.ticker)) #interactive tools plot.add_tools(PanTool(), WheelZoomTool()) #, SaveTool()) return plot