Python transformers.BertModel.from_pretrained() Examples
The following are 19
code examples of transformers.BertModel.from_pretrained().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
transformers.BertModel
, or try the search function
.

Example #1
Source File: cxtebd.py From Distributional-Signatures with MIT License | 6 votes |
def __init__(self, pretrained_model_name_or_path=None, cache_dir=None, finetune_ebd=False, return_seq=False): ''' pretrained_model_name_or_path, cache_dir: check huggingface's codebase for details finetune_ebd: finetuning bert representation or not during meta-training return_seq: return a sequence of bert representations, or [cls] ''' super(CXTEBD, self).__init__() self.finetune_ebd = finetune_ebd self.return_seq = return_seq print("{}, Loading pretrained bert".format( datetime.datetime.now().strftime('%02y/%02m/%02d %H:%M:%S')), flush=True) self.model = BertModel.from_pretrained(pretrained_model_name_or_path, cache_dir=cache_dir) self.embedding_dim = self.model.config.hidden_size self.ebd_dim = self.model.config.hidden_size
Example #2
Source File: convert_bert_pytorch_checkpoint_to_original_tf.py From exbert with Apache License 2.0 | 6 votes |
def main(raw_args=None): parser = argparse.ArgumentParser() parser.add_argument("--model_name", type=str, required=True, help="model name e.g. bert-base-uncased") parser.add_argument( "--cache_dir", type=str, default=None, required=False, help="Directory containing pytorch model" ) parser.add_argument("--pytorch_model_path", type=str, required=True, help="/path/to/<pytorch-model-name>.bin") parser.add_argument("--tf_cache_dir", type=str, required=True, help="Directory in which to save tensorflow model") args = parser.parse_args(raw_args) model = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name, state_dict=torch.load(args.pytorch_model_path), cache_dir=args.cache_dir, ) convert_pytorch_checkpoint_to_tf(model=model, ckpt_dir=args.tf_cache_dir, model_name=args.model_name)
Example #3
Source File: embedding_layer.py From textclf with MIT License | 5 votes |
def __init__(self, config: BertEmbeddingLayerConfig): super(BertEmbeddingLayer, self).__init__(config) self.embedding = BertModel.from_pretrained(self.config.model_dir)
Example #4
Source File: bert_encoder.py From REDN with MIT License | 5 votes |
def __init__(self, max_length, pretrain_path, blank_padding=True): """ Args: max_length: max length of sentence pretrain_path: path of pretrain model """ super().__init__() self.max_length = max_length self.blank_padding = blank_padding self.hidden_size = 768 * 2 self.bert = BertModel.from_pretrained(pretrain_path) self.tokenizer = BertTokenizer.from_pretrained(pretrain_path) self.linear = nn.Linear(self.hidden_size, self.hidden_size)
Example #5
Source File: bert_encoder.py From REDN with MIT License | 5 votes |
def __init__(self, pretrain_path, blank_padding=True): super().__init__(80, pretrain_path, blank_padding) self.bert = BertModel.from_pretrained(pretrain_path, output_hidden_states=True,output_attentions=True)
Example #6
Source File: bert_encoder.py From REDN with MIT License | 5 votes |
def __init__(self, max_length, pretrain_path, blank_padding=True): """ Args: max_length: max length of sentence pretrain_path: path of pretrain model """ super().__init__() self.max_length = max_length self.blank_padding = blank_padding self.bert = BertModel.from_pretrained(pretrain_path) self.hidden_size = self.bert.config.hidden_size self.tokenizer = BertTokenizer.from_pretrained(pretrain_path)
Example #7
Source File: model_builder.py From nlp-recipes with MIT License | 5 votes |
def __init__(self, large, temp_dir, finetune=False): super(Bert, self).__init__() if large: self.model = BertModel.from_pretrained( "bert-large-uncased", cache_dir=temp_dir ) else: self.model = BertModel.from_pretrained( "bert-base-uncased", cache_dir=temp_dir ) self.finetune = finetune
Example #8
Source File: model_builder.py From nlp-recipes with MIT License | 5 votes |
def __init__(self, temp_dir, model_class, pretrained_model_name, pretrained_config): super(Transformer, self).__init__() if(pretrained_model_name): self.model = model_class.from_pretrained(pretrained_model_name, cache_dir=temp_dir) #self.model = BertModel.from_pretrained('bert-base-uncased', cache_dir=temp_dir) else: self.model = model_class(pretrained_config)
Example #9
Source File: sentence_encoder.py From FewRel with MIT License | 5 votes |
def __init__(self, pretrain_path, max_length): nn.Module.__init__(self) self.roberta = RobertaForSequenceClassification.from_pretrained( pretrain_path, num_labels=2) self.max_length = max_length self.tokenizer = RobertaTokenizer.from_pretrained('roberta-base')
Example #10
Source File: sentence_encoder.py From FewRel with MIT License | 5 votes |
def __init__(self, pretrain_path, max_length, cat_entity_rep=False): nn.Module.__init__(self) self.roberta = RobertaModel.from_pretrained(pretrain_path) self.max_length = max_length self.tokenizer = RobertaTokenizer.from_pretrained('roberta-base') self.cat_entity_rep = cat_entity_rep
Example #11
Source File: sentence_encoder.py From FewRel with MIT License | 5 votes |
def __init__(self, pretrain_path, max_length): nn.Module.__init__(self) self.bert = BertForSequenceClassification.from_pretrained( pretrain_path, num_labels=2) self.max_length = max_length self.tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
Example #12
Source File: sentence_encoder.py From FewRel with MIT License | 5 votes |
def __init__(self, pretrain_path, max_length, cat_entity_rep=False): nn.Module.__init__(self) self.bert = BertModel.from_pretrained(pretrain_path) self.max_length = max_length self.tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') self.cat_entity_rep = cat_entity_rep
Example #13
Source File: bert_encoder.py From OpenNRE with MIT License | 5 votes |
def __init__(self, max_length, pretrain_path, blank_padding=True, mask_entity=False): """ Args: max_length: max length of sentence pretrain_path: path of pretrain model """ super().__init__() self.max_length = max_length self.blank_padding = blank_padding self.hidden_size = 768 self.mask_entity = mask_entity logging.info('Loading BERT pre-trained checkpoint.') self.bert = BertModel.from_pretrained(pretrain_path) self.tokenizer = BertTokenizer.from_pretrained(pretrain_path)
Example #14
Source File: run_pplm_discrim_train.py From PPLM with Apache License 2.0 | 5 votes |
def __init__( self, class_size=None, pretrained_model="gpt2-medium", classifier_head=None, cached_mode=False, device='cpu' ): super(Discriminator, self).__init__() if pretrained_model.startswith("gpt2"): self.tokenizer = GPT2Tokenizer.from_pretrained(pretrained_model) self.encoder = GPT2LMHeadModel.from_pretrained(pretrained_model) self.embed_size = self.encoder.transformer.config.hidden_size elif pretrained_model.startswith("bert"): self.tokenizer = BertTokenizer.from_pretrained(pretrained_model) self.encoder = BertModel.from_pretrained(pretrained_model) self.embed_size = self.encoder.config.hidden_size else: raise ValueError( "{} model not yet supported".format(pretrained_model) ) if classifier_head: self.classifier_head = classifier_head else: if not class_size: raise ValueError("must specify class_size") self.classifier_head = ClassificationHead( class_size=class_size, embed_size=self.embed_size ) self.cached_mode = cached_mode self.device = device
Example #15
Source File: jointBERT.py From tatk with Apache License 2.0 | 5 votes |
def __init__(self, model_config, device, slot_dim, intent_dim, intent_weight=None): super(JointBERT, self).__init__() self.slot_num_labels = slot_dim self.intent_num_labels = intent_dim self.device = device self.intent_weight = intent_weight if intent_weight is not None else torch.tensor([1.]*intent_dim) self.bert = BertModel.from_pretrained(model_config['pretrained_weights']) self.dropout = nn.Dropout(model_config['dropout']) self.context = model_config['context'] self.finetune = model_config['finetune'] self.context_grad = model_config['context_grad'] self.hidden_units = model_config['hidden_units'] if self.hidden_units > 0: if self.context: self.intent_classifier = nn.Linear(self.hidden_units, self.intent_num_labels) self.slot_classifier = nn.Linear(self.hidden_units, self.slot_num_labels) self.intent_hidden = nn.Linear(2 * self.bert.config.hidden_size, self.hidden_units) self.slot_hidden = nn.Linear(2 * self.bert.config.hidden_size, self.hidden_units) else: self.intent_classifier = nn.Linear(self.hidden_units, self.intent_num_labels) self.slot_classifier = nn.Linear(self.hidden_units, self.slot_num_labels) self.intent_hidden = nn.Linear(self.bert.config.hidden_size, self.hidden_units) self.slot_hidden = nn.Linear(self.bert.config.hidden_size, self.hidden_units) nn.init.xavier_uniform_(self.intent_hidden.weight) nn.init.xavier_uniform_(self.slot_hidden.weight) else: if self.context: self.intent_classifier = nn.Linear(2 * self.bert.config.hidden_size, self.intent_num_labels) self.slot_classifier = nn.Linear(2 * self.bert.config.hidden_size, self.slot_num_labels) else: self.intent_classifier = nn.Linear(self.bert.config.hidden_size, self.intent_num_labels) self.slot_classifier = nn.Linear(self.bert.config.hidden_size, self.slot_num_labels) nn.init.xavier_uniform_(self.intent_classifier.weight) nn.init.xavier_uniform_(self.slot_classifier.weight) self.intent_loss_fct = torch.nn.BCEWithLogitsLoss(pos_weight=self.intent_weight) self.slot_loss_fct = torch.nn.CrossEntropyLoss()
Example #16
Source File: bert.py From parser with MIT License | 5 votes |
def __init__(self, model, n_layers, n_out, requires_grad=False): super(BertEmbedding, self).__init__() self.bert = BertModel.from_pretrained(model, output_hidden_states=True) self.bert = self.bert.requires_grad_(requires_grad) self.n_layers = n_layers self.n_out = n_out self.requires_grad = requires_grad self.hidden_size = self.bert.config.hidden_size self.scalar_mix = ScalarMix(n_layers) self.projection = nn.Linear(self.hidden_size, n_out, False)
Example #17
Source File: BERT.py From sentence-transformers with Apache License 2.0 | 5 votes |
def __init__(self, model_name_or_path: str, max_seq_length: int = 128, do_lower_case: Optional[bool] = None, model_args: Dict = {}, tokenizer_args: Dict = {}): super(BERT, self).__init__() self.config_keys = ['max_seq_length', 'do_lower_case'] self.do_lower_case = do_lower_case if max_seq_length > 510: logging.warning("BERT only allows a max_seq_length of 510 (512 with special tokens). Value will be set to 510") max_seq_length = 510 self.max_seq_length = max_seq_length if self.do_lower_case is not None: tokenizer_args['do_lower_case'] = do_lower_case self.bert = BertModel.from_pretrained(model_name_or_path, **model_args) self.tokenizer = BertTokenizer.from_pretrained(model_name_or_path, **tokenizer_args)
Example #18
Source File: jointBERT.py From ConvLab with MIT License | 5 votes |
def __init__(self, model_config, device, slot_dim, intent_dim, intent_weight=None): super(JointBERT, self).__init__() self.slot_num_labels = slot_dim self.intent_num_labels = intent_dim self.device = device self.intent_weight = intent_weight if intent_weight is not None else torch.tensor([1.]*intent_dim) self.bert = BertModel.from_pretrained(model_config['pretrained_weights']) self.dropout = nn.Dropout(model_config['dropout']) self.context = model_config['context'] self.finetune = model_config['finetune'] self.context_grad = model_config['context_grad'] if self.context: self.intent_classifier = nn.Linear(2 * self.bert.config.hidden_size, self.intent_num_labels) self.slot_classifier = nn.Linear(2 * self.bert.config.hidden_size, self.slot_num_labels) self.intent_hidden = nn.Linear(2 * self.bert.config.hidden_size, 2 * self.bert.config.hidden_size) self.slot_hidden = nn.Linear(2 * self.bert.config.hidden_size, 2 * self.bert.config.hidden_size) else: self.intent_classifier = nn.Linear(self.bert.config.hidden_size, self.intent_num_labels) self.slot_classifier = nn.Linear(self.bert.config.hidden_size, self.slot_num_labels) self.intent_hidden = nn.Linear(self.bert.config.hidden_size, self.bert.config.hidden_size) self.slot_hidden = nn.Linear(self.bert.config.hidden_size, self.bert.config.hidden_size) nn.init.xavier_uniform_(self.intent_hidden.weight) nn.init.xavier_uniform_(self.slot_hidden.weight) nn.init.xavier_uniform_(self.intent_classifier.weight) nn.init.xavier_uniform_(self.slot_classifier.weight) self.intent_loss_fct = torch.nn.BCEWithLogitsLoss(pos_weight=self.intent_weight) self.slot_loss_fct = torch.nn.CrossEntropyLoss()
Example #19
Source File: bert_encoder.py From OpenNRE with MIT License | 5 votes |
def __init__(self, max_length, pretrain_path, blank_padding=True, mask_entity=False): """ Args: max_length: max length of sentence pretrain_path: path of pretrain model """ super().__init__() self.max_length = max_length self.blank_padding = blank_padding self.hidden_size = 768 * 2 self.mask_entity = mask_entity logging.info('Loading BERT pre-trained checkpoint.') self.bert = BertModel.from_pretrained(pretrain_path) self.tokenizer = BertTokenizer.from_pretrained(pretrain_path) self.linear = nn.Linear(self.hidden_size, self.hidden_size)