Python mxnet.__version__() Examples
The following are 19
code examples of mxnet.__version__().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
mxnet
, or try the search function
.
Example #1
Source File: diagnose.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 6 votes |
def check_mxnet(): print('----------MXNet Info-----------') try: import mxnet print('Version :', mxnet.__version__) mx_dir = os.path.dirname(mxnet.__file__) print('Directory :', mx_dir) commit_hash = os.path.join(mx_dir, 'COMMIT_HASH') with open(commit_hash, 'r') as f: ch = f.read().strip() print('Commit Hash :', ch) except ImportError: print('No MXNet installed.') except IOError: print('Hashtag not found. Not installed from pre-built package.') except Exception as e: import traceback if not isinstance(e, IOError): print("An error occured trying to import mxnet.") print("This is very likely due to missing missing or incompatible library files.") print(traceback.format_exc())
Example #2
Source File: diagnose.py From SNIPER-mxnet with Apache License 2.0 | 6 votes |
def check_mxnet(): print('----------MXNet Info-----------') try: import mxnet print('Version :', mxnet.__version__) mx_dir = os.path.dirname(mxnet.__file__) print('Directory :', mx_dir) commit_hash = os.path.join(mx_dir, 'COMMIT_HASH') with open(commit_hash, 'r') as f: ch = f.read().strip() print('Commit Hash :', ch) except ImportError: print('No MXNet installed.') except IOError: print('Hashtag not found. Not installed from pre-built package.') except Exception as e: import traceback if not isinstance(e, IOError): print("An error occured trying to import mxnet.") print("This is very likely due to missing missing or incompatible library files.") print(traceback.format_exc())
Example #3
Source File: try_import.py From autogluon with Apache License 2.0 | 6 votes |
def try_import_gluonnlp(): try: import gluonnlp # TODO After 1.0 is supported, # we will remove the checking here and use gluonnlp.utils.check_version instead. from pkg_resources import parse_version # pylint: disable=import-outside-toplevel gluonnlp_version = parse_version(gluonnlp.__version__) assert gluonnlp_version >= parse_version('0.8.1') and\ gluonnlp_version <= parse_version('0.8.3'), \ 'Currently, we only support 0.8.1<=gluonnlp<=0.8.3' except ImportError: raise ImportError( "Unable to import dependency gluonnlp. The NLP model won't be available " "without installing gluonnlp. " "A quick tip is to install via `pip install gluonnlp==0.8.1`. ") return gluonnlp
Example #4
Source File: try_import.py From autogluon with Apache License 2.0 | 6 votes |
def try_import_mxnet(): mx_version = '1.4.1' try: import mxnet as mx from distutils.version import LooseVersion if LooseVersion(mx.__version__) < LooseVersion(mx_version): msg = ( "Legacy mxnet-mkl=={} detected, some new modules may not work properly. " "mxnet-mkl>={} is required. You can use pip to upgrade mxnet " "`pip install mxnet-mkl --pre --upgrade` " "or `pip install mxnet-cu90mkl --pre --upgrade`").format(mx.__version__, mx_version) raise ImportError(msg) except ImportError: raise ImportError( "Unable to import dependency mxnet. " "A quick tip is to install via `pip install mxnet-mkl/mxnet-cu90mkl --pre`. ")
Example #5
Source File: dignose.py From video-to-pose3D with MIT License | 6 votes |
def check_mxnet(): print('----------MXNet Info-----------') try: import mxnet print('Version :', mxnet.__version__) mx_dir = os.path.dirname(mxnet.__file__) print('Directory :', mx_dir) commit_hash = os.path.join(mx_dir, 'COMMIT_HASH') with open(commit_hash, 'r') as f: ch = f.read().strip() print('Commit Hash :', ch) except ImportError: print('No MXNet installed.') except IOError: print('Hashtag not found. Not installed from pre-built package.') except Exception as e: import traceback if not isinstance(e, IOError): print("An error occured trying to import mxnet.") print("This is very likely due to missing missing or incompatible library files.") print(traceback.format_exc())
Example #6
Source File: detection_module.py From groupsoftmax-simpledet with Apache License 2.0 | 6 votes |
def update_metric(self, eval_metric, labels, pre_sliced=False): """Evaluates and accumulates evaluation metric on outputs of the last forward computation. See Also ---------- :meth:`BaseModule.update_metric`. Parameters ---------- eval_metric : EvalMetric Evaluation metric to use. labels : list of NDArray if `pre_sliced` parameter is set to `False`, list of lists of NDArray otherwise. Typically `data_batch.label`. pre_sliced: bool Whether the labels are already sliced per device (default: False). """ if mxnet.__version__ >= "1.3.0": self._exec_group.update_metric(eval_metric, labels, pre_sliced) else: self._exec_group.update_metric(eval_metric, labels)
Example #7
Source File: module.py From Relation-Networks-for-Object-Detection with MIT License | 6 votes |
def update(self): """Update parameters according to the installed optimizer and the gradients computed in the previous forward-backward batch. """ assert self.binded and self.params_initialized and self.optimizer_initialized self._params_dirty = True if self._update_on_kvstore: if int(mx.__version__[0]) == 1: _update_params_on_kvstore(self._exec_group.param_arrays, self._exec_group.grad_arrays, self._kvstore, self._exec_group.param_names) else: _update_params_on_kvstore(self._exec_group.param_arrays, self._exec_group.grad_arrays, self._kvstore) else: _update_params(self._exec_group.param_arrays, self._exec_group.grad_arrays, updater=self._updater, num_device=len(self._context), kvstore=self._kvstore)
Example #8
Source File: setup.py From mxnet_to_onnx with Apache License 2.0 | 6 votes |
def check_mxnet_version(min_ver): if not int(os.environ.get('UPDATE_MXNET_FOR_ONNX_EXPORTER', '1')): print("Env var set to not upgrade MxNet for ONNX exporter. Skipping.") return False try: print("Checking if MxNet is installed.") import mxnet as mx except ImportError: print("MxNet is not installed. Installing version from requirements.txt") return False ver = float(re.match(extract_major_minor, mx.__version__).group(1)) min_ver = float(re.match(extract_major_minor, min_ver).group(1)) if ver < min_ver: print("MxNet is installed, but installed version (%s) is older than expected (%s). Upgrading." % (str(ver).rstrip('0'), str(min_ver).rstrip('0'))) return False print("Installed MxNet version (%s) meets the requirement of >= (%s). No need to install." % (str(ver).rstrip('0'), str(min_ver).rstrip('0'))) return True
Example #9
Source File: module.py From kaggle-rsna18 with MIT License | 6 votes |
def update(self): """Update parameters according to the installed optimizer and the gradients computed in the previous forward-backward batch. """ assert self.binded and self.params_initialized and self.optimizer_initialized self._params_dirty = True if self._update_on_kvstore: if int(mx.__version__[0]) == 1: _update_params_on_kvstore(self._exec_group.param_arrays, self._exec_group.grad_arrays, self._kvstore, self._exec_group.param_names) else: _update_params_on_kvstore(self._exec_group.param_arrays, self._exec_group.grad_arrays, self._kvstore) else: _update_params(self._exec_group.param_arrays, self._exec_group.grad_arrays, updater=self._updater, num_device=len(self._context), kvstore=self._kvstore)
Example #10
Source File: detection_module.py From simpledet with Apache License 2.0 | 6 votes |
def update_metric(self, eval_metric, labels, pre_sliced=False): """Evaluates and accumulates evaluation metric on outputs of the last forward computation. See Also ---------- :meth:`BaseModule.update_metric`. Parameters ---------- eval_metric : EvalMetric Evaluation metric to use. labels : list of NDArray if `pre_sliced` parameter is set to `False`, list of lists of NDArray otherwise. Typically `data_batch.label`. pre_sliced: bool Whether the labels are already sliced per device (default: False). """ if mxnet.__version__ >= "1.3.0": self._exec_group.update_metric(eval_metric, labels, pre_sliced) else: self._exec_group.update_metric(eval_metric, labels)
Example #11
Source File: version.py From gluon-cv with Apache License 2.0 | 6 votes |
def _require_mxnet_version(mx_version, max_mx_version='2.0.0'): try: import mxnet as mx from distutils.version import LooseVersion if LooseVersion(mx.__version__) < LooseVersion(mx_version) or \ LooseVersion(mx.__version__) >= LooseVersion(max_mx_version): version_str = '>={},<{}'.format(mx_version, max_mx_version) msg = ( "Legacy mxnet-mkl=={0} detected, some modules may not work properly. " "mxnet-mkl{1} is required. You can use pip to upgrade mxnet " "`pip install -U 'mxnet-mkl{1}'` " "or `pip install -U 'mxnet-cu100mkl{1}'`\ ").format(mx.__version__, version_str) raise RuntimeError(msg) except ImportError: raise ImportError( "Unable to import dependency mxnet. " "A quick tip is to install via " "`pip install 'mxnet-cu100mkl<{}'`. " "please refer to https://gluon-cv.mxnet.io/#installation for details.".format( max_mx_version))
Example #12
Source File: version.py From gluon-cv with Apache License 2.0 | 6 votes |
def check_version(min_version, warning_only=False): """Check the version of gluoncv satisfies the provided minimum version. An exception is thrown if the check does not pass. Parameters ---------- min_version : str Minimum version warning_only : bool Printing a warning instead of throwing an exception. """ from .. import __version__ from distutils.version import LooseVersion bad_version = LooseVersion(__version__) < LooseVersion(min_version) if bad_version: msg = 'Installed GluonCV version (%s) does not satisfy the ' \ 'minimum required version (%s)'%(__version__, min_version) if warning_only: warnings.warn(msg) else: raise AssertionError(msg)
Example #13
Source File: log.py From sockeye with Apache License 2.0 | 5 votes |
def log_sockeye_version(logger): from sockeye import __version__, __file__ try: from sockeye.git_version import git_hash except ImportError: git_hash = "unknown" logger.info("Sockeye version %s, commit %s, path %s", __version__, git_hash, __file__)
Example #14
Source File: log.py From sockeye with Apache License 2.0 | 5 votes |
def log_mxnet_version(logger): from mxnet import __version__, __file__ logger.info("MXNet version %s, path %s", __version__, __file__)
Example #15
Source File: gluon.py From mlflow with Apache License 2.0 | 5 votes |
def get_default_conda_env(): """ :return: The default Conda environment for MLflow Models produced by calls to :func:`save_model()` and :func:`log_model()`. """ pip_deps = ["mxnet=={}".format(mx.__version__)] return _mlflow_conda_env(additional_pip_deps=pip_deps)
Example #16
Source File: dignose.py From video-to-pose3D with MIT License | 5 votes |
def check_pip(): print('------------Pip Info-----------') try: import pip print('Version :', pip.__version__) print('Directory :', os.path.dirname(pip.__file__)) except ImportError: print('No corresponding pip install for current python.')
Example #17
Source File: diagnose.py From SNIPER-mxnet with Apache License 2.0 | 5 votes |
def check_pip(): print('------------Pip Info-----------') try: import pip print('Version :', pip.__version__) print('Directory :', os.path.dirname(pip.__file__)) except ImportError: print('No corresponding pip install for current python.')
Example #18
Source File: diagnose.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 5 votes |
def check_pip(): print('------------Pip Info-----------') try: import pip print('Version :', pip.__version__) print('Directory :', os.path.dirname(pip.__file__)) except ImportError: print('No corresponding pip install for current python.')
Example #19
Source File: base_trainer.py From crnn.gluon with Apache License 2.0 | 4 votes |
def __init__(self, config, model, criterion, ctx, sample_input): config['trainer']['output_dir'] = os.path.join(str(pathlib.Path(os.path.abspath(__name__)).parent), config['trainer']['output_dir']) config['name'] = config['name'] + '_' + model.model_name self.save_dir = os.path.join(config['trainer']['output_dir'], config['name']) self.checkpoint_dir = os.path.join(self.save_dir, 'checkpoint') self.alphabet = config['dataset']['alphabet'] if config['trainer']['resume_checkpoint'] == '' and config['trainer']['finetune_checkpoint'] == '': shutil.rmtree(self.save_dir, ignore_errors=True) if not os.path.exists(self.checkpoint_dir): os.makedirs(self.checkpoint_dir) # 保存本次实验的alphabet 到模型保存的地方 save(list(self.alphabet), os.path.join(self.save_dir, 'dict.txt')) self.global_step = 0 self.start_epoch = 0 self.config = config self.model = model self.criterion = criterion # logger and tensorboard self.tensorboard_enable = self.config['trainer']['tensorboard'] self.epochs = self.config['trainer']['epochs'] self.display_interval = self.config['trainer']['display_interval'] if self.tensorboard_enable: from mxboard import SummaryWriter self.writer = SummaryWriter(self.save_dir, verbose=False) self.logger = setup_logger(os.path.join(self.save_dir, 'train.log')) self.logger.info(pformat(self.config)) self.logger.info(self.model) # device set self.ctx = ctx mx.random.seed(2) # 设置随机种子 self.logger.info('train with mxnet: {} and device: {}'.format(mx.__version__, self.ctx)) self.metrics = {'val_acc': 0, 'train_loss': float('inf'), 'best_model': ''} schedule = self._initialize('lr_scheduler', mx.lr_scheduler) optimizer = self._initialize('optimizer', mx.optimizer, lr_scheduler=schedule) self.trainer = gluon.Trainer(self.model.collect_params(), optimizer=optimizer) if self.config['trainer']['resume_checkpoint'] != '': self._laod_checkpoint(self.config['trainer']['resume_checkpoint'], resume=True) elif self.config['trainer']['finetune_checkpoint'] != '': self._laod_checkpoint(self.config['trainer']['finetune_checkpoint'], resume=False) if self.tensorboard_enable: try: # add graph from mxnet.gluon import utils as gutils self.model(sample_input) self.writer.add_graph(model) except: self.logger.error(traceback.format_exc()) self.logger.warn('add graph to tensorboard failed')