Python object_detection.utils.config_util.create_configs_from_pipeline_proto() Examples
The following are 10
code examples of object_detection.utils.config_util.create_configs_from_pipeline_proto().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
object_detection.utils.config_util
, or try the search function
.
Example #1
Source File: config_util_test.py From vehicle_counting_tensorflow with MIT License | 6 votes |
def test_create_configs_from_pipeline_proto(self): """Tests creating configs dictionary from pipeline proto.""" pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() pipeline_config.model.faster_rcnn.num_classes = 10 pipeline_config.train_config.batch_size = 32 pipeline_config.train_input_reader.label_map_path = "path/to/label_map" pipeline_config.eval_config.num_examples = 20 pipeline_config.eval_input_reader.add().queue_capacity = 100 configs = config_util.create_configs_from_pipeline_proto(pipeline_config) self.assertProtoEquals(pipeline_config.model, configs["model"]) self.assertProtoEquals(pipeline_config.train_config, configs["train_config"]) self.assertProtoEquals(pipeline_config.train_input_reader, configs["train_input_config"]) self.assertProtoEquals(pipeline_config.eval_config, configs["eval_config"]) self.assertProtoEquals(pipeline_config.eval_input_reader, configs["eval_input_configs"])
Example #2
Source File: config_util_test.py From Person-Detection-and-Tracking with MIT License | 6 votes |
def test_create_configs_from_pipeline_proto(self): """Tests creating configs dictionary from pipeline proto.""" pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() pipeline_config.model.faster_rcnn.num_classes = 10 pipeline_config.train_config.batch_size = 32 pipeline_config.train_input_reader.label_map_path = "path/to/label_map" pipeline_config.eval_config.num_examples = 20 pipeline_config.eval_input_reader.queue_capacity = 100 configs = config_util.create_configs_from_pipeline_proto(pipeline_config) self.assertProtoEquals(pipeline_config.model, configs["model"]) self.assertProtoEquals(pipeline_config.train_config, configs["train_config"]) self.assertProtoEquals(pipeline_config.train_input_reader, configs["train_input_config"]) self.assertProtoEquals(pipeline_config.eval_config, configs["eval_config"]) self.assertProtoEquals(pipeline_config.eval_input_reader, configs["eval_input_config"])
Example #3
Source File: config_util_test.py From Gun-Detector with Apache License 2.0 | 6 votes |
def test_create_configs_from_pipeline_proto(self): """Tests creating configs dictionary from pipeline proto.""" pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() pipeline_config.model.faster_rcnn.num_classes = 10 pipeline_config.train_config.batch_size = 32 pipeline_config.train_input_reader.label_map_path = "path/to/label_map" pipeline_config.eval_config.num_examples = 20 pipeline_config.eval_input_reader.queue_capacity = 100 configs = config_util.create_configs_from_pipeline_proto(pipeline_config) self.assertProtoEquals(pipeline_config.model, configs["model"]) self.assertProtoEquals(pipeline_config.train_config, configs["train_config"]) self.assertProtoEquals(pipeline_config.train_input_reader, configs["train_input_config"]) self.assertProtoEquals(pipeline_config.eval_config, configs["eval_config"]) self.assertProtoEquals(pipeline_config.eval_input_reader, configs["eval_input_config"])
Example #4
Source File: config_util_test.py From ros_tensorflow with Apache License 2.0 | 6 votes |
def test_create_configs_from_pipeline_proto(self): """Tests creating configs dictionary from pipeline proto.""" pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() pipeline_config.model.faster_rcnn.num_classes = 10 pipeline_config.train_config.batch_size = 32 pipeline_config.train_input_reader.label_map_path = "path/to/label_map" pipeline_config.eval_config.num_examples = 20 pipeline_config.eval_input_reader.queue_capacity = 100 configs = config_util.create_configs_from_pipeline_proto(pipeline_config) self.assertProtoEquals(pipeline_config.model, configs["model"]) self.assertProtoEquals(pipeline_config.train_config, configs["train_config"]) self.assertProtoEquals(pipeline_config.train_input_reader, configs["train_input_config"]) self.assertProtoEquals(pipeline_config.eval_config, configs["eval_config"]) self.assertProtoEquals(pipeline_config.eval_input_reader, configs["eval_input_config"])
Example #5
Source File: config_util_test.py From BMW-TensorFlow-Training-GUI with Apache License 2.0 | 6 votes |
def test_create_configs_from_pipeline_proto(self): """Tests creating configs dictionary from pipeline proto.""" pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() pipeline_config.model.faster_rcnn.num_classes = 10 pipeline_config.train_config.batch_size = 32 pipeline_config.train_input_reader.label_map_path = "path/to/label_map" pipeline_config.eval_config.num_examples = 20 pipeline_config.eval_input_reader.queue_capacity = 100 configs = config_util.create_configs_from_pipeline_proto(pipeline_config) self.assertProtoEquals(pipeline_config.model, configs["model"]) self.assertProtoEquals(pipeline_config.train_config, configs["train_config"]) self.assertProtoEquals(pipeline_config.train_input_reader, configs["train_input_config"]) self.assertProtoEquals(pipeline_config.eval_config, configs["eval_config"]) self.assertProtoEquals(pipeline_config.eval_input_reader, configs["eval_input_config"])
Example #6
Source File: config_util_test.py From Live-feed-object-device-identification-using-Tensorflow-and-OpenCV with Apache License 2.0 | 6 votes |
def test_create_configs_from_pipeline_proto(self): """Tests creating configs dictionary from pipeline proto.""" pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() pipeline_config.model.faster_rcnn.num_classes = 10 pipeline_config.train_config.batch_size = 32 pipeline_config.train_input_reader.label_map_path = "path/to/label_map" pipeline_config.eval_config.num_examples = 20 pipeline_config.eval_input_reader.add().queue_capacity = 100 configs = config_util.create_configs_from_pipeline_proto(pipeline_config) self.assertProtoEquals(pipeline_config.model, configs["model"]) self.assertProtoEquals(pipeline_config.train_config, configs["train_config"]) self.assertProtoEquals(pipeline_config.train_input_reader, configs["train_input_config"]) self.assertProtoEquals(pipeline_config.eval_config, configs["eval_config"]) self.assertProtoEquals(pipeline_config.eval_input_reader, configs["eval_input_configs"])
Example #7
Source File: config_util_test.py From MAX-Object-Detector with Apache License 2.0 | 6 votes |
def test_create_configs_from_pipeline_proto(self): """Tests creating configs dictionary from pipeline proto.""" pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() pipeline_config.model.faster_rcnn.num_classes = 10 pipeline_config.train_config.batch_size = 32 pipeline_config.train_input_reader.label_map_path = "path/to/label_map" pipeline_config.eval_config.num_examples = 20 pipeline_config.eval_input_reader.add().queue_capacity = 100 configs = config_util.create_configs_from_pipeline_proto(pipeline_config) self.assertProtoEquals(pipeline_config.model, configs["model"]) self.assertProtoEquals(pipeline_config.train_config, configs["train_config"]) self.assertProtoEquals(pipeline_config.train_input_reader, configs["train_input_config"]) self.assertProtoEquals(pipeline_config.eval_config, configs["eval_config"]) self.assertProtoEquals(pipeline_config.eval_input_reader, configs["eval_input_configs"])
Example #8
Source File: config_util_test.py From g-tensorflow-models with Apache License 2.0 | 6 votes |
def test_create_configs_from_pipeline_proto(self): """Tests creating configs dictionary from pipeline proto.""" pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() pipeline_config.model.faster_rcnn.num_classes = 10 pipeline_config.train_config.batch_size = 32 pipeline_config.train_input_reader.label_map_path = "path/to/label_map" pipeline_config.eval_config.num_examples = 20 pipeline_config.eval_input_reader.add().queue_capacity = 100 configs = config_util.create_configs_from_pipeline_proto(pipeline_config) self.assertProtoEquals(pipeline_config.model, configs["model"]) self.assertProtoEquals(pipeline_config.train_config, configs["train_config"]) self.assertProtoEquals(pipeline_config.train_input_reader, configs["train_input_config"]) self.assertProtoEquals(pipeline_config.eval_config, configs["eval_config"]) self.assertProtoEquals(pipeline_config.eval_input_reader, configs["eval_input_configs"])
Example #9
Source File: config_util_test.py From models with Apache License 2.0 | 6 votes |
def test_create_configs_from_pipeline_proto(self): """Tests creating configs dictionary from pipeline proto.""" pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() pipeline_config.model.faster_rcnn.num_classes = 10 pipeline_config.train_config.batch_size = 32 pipeline_config.train_input_reader.label_map_path = "path/to/label_map" pipeline_config.eval_config.num_examples = 20 pipeline_config.eval_input_reader.add().queue_capacity = 100 configs = config_util.create_configs_from_pipeline_proto(pipeline_config) self.assertProtoEquals(pipeline_config.model, configs["model"]) self.assertProtoEquals(pipeline_config.train_config, configs["train_config"]) self.assertProtoEquals(pipeline_config.train_input_reader, configs["train_input_config"]) self.assertProtoEquals(pipeline_config.eval_config, configs["eval_config"]) self.assertProtoEquals(pipeline_config.eval_input_reader, configs["eval_input_configs"])
Example #10
Source File: config_util_test.py From multilabel-image-classification-tensorflow with MIT License | 6 votes |
def test_create_configs_from_pipeline_proto(self): """Tests creating configs dictionary from pipeline proto.""" pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() pipeline_config.model.faster_rcnn.num_classes = 10 pipeline_config.train_config.batch_size = 32 pipeline_config.train_input_reader.label_map_path = "path/to/label_map" pipeline_config.eval_config.num_examples = 20 pipeline_config.eval_input_reader.add().queue_capacity = 100 configs = config_util.create_configs_from_pipeline_proto(pipeline_config) self.assertProtoEquals(pipeline_config.model, configs["model"]) self.assertProtoEquals(pipeline_config.train_config, configs["train_config"]) self.assertProtoEquals(pipeline_config.train_input_reader, configs["train_input_config"]) self.assertProtoEquals(pipeline_config.eval_config, configs["eval_config"]) self.assertProtoEquals(pipeline_config.eval_input_reader, configs["eval_input_configs"])