Python object_detection.utils.config_util.get_number_of_classes() Examples
The following are 30
code examples of object_detection.utils.config_util.get_number_of_classes().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
object_detection.utils.config_util
, or try the search function
.
Example #1
Source File: config_util_test.py From Live-feed-object-device-identification-using-Tensorflow-and-OpenCV with Apache License 2.0 | 5 votes |
def testGetNumberOfClasses(self): """Tests that number of classes can be retrieved.""" pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config") pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() pipeline_config.model.faster_rcnn.num_classes = 20 _write_config(pipeline_config, pipeline_config_path) configs = config_util.get_configs_from_pipeline_file(pipeline_config_path) number_of_classes = config_util.get_number_of_classes(configs["model"]) self.assertEqual(20, number_of_classes)
Example #2
Source File: config_util_test.py From multilabel-image-classification-tensorflow with MIT License | 5 votes |
def testGetNumberOfClasses(self): """Tests that number of classes can be retrieved.""" pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config") pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() pipeline_config.model.faster_rcnn.num_classes = 20 _write_config(pipeline_config, pipeline_config_path) configs = config_util.get_configs_from_pipeline_file(pipeline_config_path) number_of_classes = config_util.get_number_of_classes(configs["model"]) self.assertEqual(20, number_of_classes)
Example #3
Source File: config_util_test.py From models with Apache License 2.0 | 5 votes |
def testUpdateNumClasses(self): pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config") pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() pipeline_config.model.faster_rcnn.num_classes = 10 _write_config(pipeline_config, pipeline_config_path) configs = config_util.get_configs_from_pipeline_file(pipeline_config_path) self.assertEqual(config_util.get_number_of_classes(configs["model"]), 10) config_util.merge_external_params_with_configs( configs, kwargs_dict={"num_classes": 2}) self.assertEqual(config_util.get_number_of_classes(configs["model"]), 2)
Example #4
Source File: config_util_test.py From models with Apache License 2.0 | 5 votes |
def testGetNumberOfClasses(self): """Tests that number of classes can be retrieved.""" pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config") pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() pipeline_config.model.faster_rcnn.num_classes = 20 _write_config(pipeline_config, pipeline_config_path) configs = config_util.get_configs_from_pipeline_file(pipeline_config_path) number_of_classes = config_util.get_number_of_classes(configs["model"]) self.assertEqual(20, number_of_classes)
Example #5
Source File: config_util_test.py From g-tensorflow-models with Apache License 2.0 | 5 votes |
def testGetNumberOfClasses(self): """Tests that number of classes can be retrieved.""" pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config") pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() pipeline_config.model.faster_rcnn.num_classes = 20 _write_config(pipeline_config, pipeline_config_path) configs = config_util.get_configs_from_pipeline_file(pipeline_config_path) number_of_classes = config_util.get_number_of_classes(configs["model"]) self.assertEqual(20, number_of_classes)
Example #6
Source File: config_util_test.py From MAX-Object-Detector with Apache License 2.0 | 5 votes |
def testGetNumberOfClasses(self): """Tests that number of classes can be retrieved.""" pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config") pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() pipeline_config.model.faster_rcnn.num_classes = 20 _write_config(pipeline_config, pipeline_config_path) configs = config_util.get_configs_from_pipeline_file(pipeline_config_path) number_of_classes = config_util.get_number_of_classes(configs["model"]) self.assertEqual(20, number_of_classes)
Example #7
Source File: config_util_test.py From AniSeg with Apache License 2.0 | 5 votes |
def testGetNumberOfClasses(self): """Tests that number of classes can be retrieved.""" pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config") pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() pipeline_config.model.faster_rcnn.num_classes = 20 _write_config(pipeline_config, pipeline_config_path) configs = config_util.get_configs_from_pipeline_file(pipeline_config_path) number_of_classes = config_util.get_number_of_classes(configs["model"]) self.assertEqual(20, number_of_classes)
Example #8
Source File: config_util_test.py From object_detection_with_tensorflow with MIT License | 5 votes |
def testGetNumberOfClasses(self): """Tests that number of classes can be retrieved.""" pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config") pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() pipeline_config.model.faster_rcnn.num_classes = 20 _write_config(pipeline_config, pipeline_config_path) configs = config_util.get_configs_from_pipeline_file(pipeline_config_path) number_of_classes = config_util.get_number_of_classes(configs["model"]) self.assertEqual(20, number_of_classes)
Example #9
Source File: config_util_test.py From object_detection_with_tensorflow with MIT License | 5 votes |
def testGetNumberOfClasses(self): """Tests that number of classes can be retrieved.""" pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config") pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() pipeline_config.model.faster_rcnn.num_classes = 20 _write_config(pipeline_config, pipeline_config_path) configs = config_util.get_configs_from_pipeline_file(pipeline_config_path) number_of_classes = config_util.get_number_of_classes(configs["model"]) self.assertEqual(20, number_of_classes)
Example #10
Source File: config_util_test.py From Elphas with Apache License 2.0 | 5 votes |
def testGetNumberOfClasses(self): """Tests that number of classes can be retrieved.""" pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config") pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() pipeline_config.model.faster_rcnn.num_classes = 20 _write_config(pipeline_config, pipeline_config_path) configs = config_util.get_configs_from_pipeline_file(pipeline_config_path) number_of_classes = config_util.get_number_of_classes(configs["model"]) self.assertEqual(20, number_of_classes)
Example #11
Source File: config_util_test.py From BMW-TensorFlow-Training-GUI with Apache License 2.0 | 5 votes |
def testGetNumberOfClasses(self): """Tests that number of classes can be retrieved.""" pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config") pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() pipeline_config.model.faster_rcnn.num_classes = 20 _write_config(pipeline_config, pipeline_config_path) configs = config_util.get_configs_from_pipeline_file(pipeline_config_path) number_of_classes = config_util.get_number_of_classes(configs["model"]) self.assertEqual(20, number_of_classes)
Example #12
Source File: config_util_test.py From ros_tensorflow with Apache License 2.0 | 5 votes |
def testGetNumberOfClasses(self): """Tests that number of classes can be retrieved.""" pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config") pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() pipeline_config.model.faster_rcnn.num_classes = 20 _write_config(pipeline_config, pipeline_config_path) configs = config_util.get_configs_from_pipeline_file(pipeline_config_path) number_of_classes = config_util.get_number_of_classes(configs["model"]) self.assertEqual(20, number_of_classes)
Example #13
Source File: config_util_test.py From vehicle_counting_tensorflow with MIT License | 5 votes |
def testGetNumberOfClasses(self): """Tests that number of classes can be retrieved.""" pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config") pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() pipeline_config.model.faster_rcnn.num_classes = 20 _write_config(pipeline_config, pipeline_config_path) configs = config_util.get_configs_from_pipeline_file(pipeline_config_path) number_of_classes = config_util.get_number_of_classes(configs["model"]) self.assertEqual(20, number_of_classes)
Example #14
Source File: config_util_test.py From Gun-Detector with Apache License 2.0 | 5 votes |
def testGetNumberOfClasses(self): """Tests that number of classes can be retrieved.""" pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config") pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() pipeline_config.model.faster_rcnn.num_classes = 20 _write_config(pipeline_config, pipeline_config_path) configs = config_util.get_configs_from_pipeline_file(pipeline_config_path) number_of_classes = config_util.get_number_of_classes(configs["model"]) self.assertEqual(20, number_of_classes)
Example #15
Source File: config_util_test.py From ros_people_object_detection_tensorflow with Apache License 2.0 | 5 votes |
def testGetNumberOfClasses(self): """Tests that number of classes can be retrieved.""" pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config") pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() pipeline_config.model.faster_rcnn.num_classes = 20 _write_config(pipeline_config, pipeline_config_path) configs = config_util.get_configs_from_pipeline_file(pipeline_config_path) number_of_classes = config_util.get_number_of_classes(configs["model"]) self.assertEqual(20, number_of_classes)
Example #16
Source File: config_util_test.py From Traffic-Rule-Violation-Detection-System with MIT License | 5 votes |
def testGetNumberOfClasses(self): """Tests that number of classes can be retrieved.""" pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config") pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() pipeline_config.model.faster_rcnn.num_classes = 20 _write_config(pipeline_config, pipeline_config_path) configs = config_util.get_configs_from_pipeline_file(pipeline_config_path) number_of_classes = config_util.get_number_of_classes(configs["model"]) self.assertEqual(20, number_of_classes)
Example #17
Source File: config_util_test.py From yolo_v2 with Apache License 2.0 | 5 votes |
def testGetNumberOfClasses(self): """Tests that number of classes can be retrieved.""" pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config") pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() pipeline_config.model.faster_rcnn.num_classes = 20 _write_config(pipeline_config, pipeline_config_path) configs = config_util.get_configs_from_pipeline_file(pipeline_config_path) number_of_classes = config_util.get_number_of_classes(configs["model"]) self.assertEqual(20, number_of_classes)
Example #18
Source File: config_util_test.py From Person-Detection-and-Tracking with MIT License | 5 votes |
def testGetNumberOfClasses(self): """Tests that number of classes can be retrieved.""" pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config") pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() pipeline_config.model.faster_rcnn.num_classes = 20 _write_config(pipeline_config, pipeline_config_path) configs = config_util.get_configs_from_pipeline_file(pipeline_config_path) number_of_classes = config_util.get_number_of_classes(configs["model"]) self.assertEqual(20, number_of_classes)
Example #19
Source File: inputs.py From MAX-Object-Detector with Apache License 2.0 | 4 votes |
def create_predict_input_fn(model_config, predict_input_config): """Creates a predict `input` function for `Estimator`. Args: model_config: A model_pb2.DetectionModel. predict_input_config: An input_reader_pb2.InputReader. Returns: `input_fn` for `Estimator` in PREDICT mode. """ def _predict_input_fn(params=None): """Decodes serialized tf.Examples and returns `ServingInputReceiver`. Args: params: Parameter dictionary passed from the estimator. Returns: `ServingInputReceiver`. """ del params example = tf.placeholder(dtype=tf.string, shape=[], name='tf_example') num_classes = config_util.get_number_of_classes(model_config) model = model_builder.build(model_config, is_training=False) image_resizer_config = config_util.get_image_resizer_config(model_config) image_resizer_fn = image_resizer_builder.build(image_resizer_config) transform_fn = functools.partial( transform_input_data, model_preprocess_fn=model.preprocess, image_resizer_fn=image_resizer_fn, num_classes=num_classes, data_augmentation_fn=None) decoder = tf_example_decoder.TfExampleDecoder( load_instance_masks=False, num_additional_channels=predict_input_config.num_additional_channels) input_dict = transform_fn(decoder.decode(example)) images = tf.to_float(input_dict[fields.InputDataFields.image]) images = tf.expand_dims(images, axis=0) true_image_shape = tf.expand_dims( input_dict[fields.InputDataFields.true_image_shape], axis=0) return tf.estimator.export.ServingInputReceiver( features={ fields.InputDataFields.image: images, fields.InputDataFields.true_image_shape: true_image_shape}, receiver_tensors={SERVING_FED_EXAMPLE_KEY: example}) return _predict_input_fn
Example #20
Source File: inputs.py From multilabel-image-classification-tensorflow with MIT License | 4 votes |
def create_predict_input_fn(model_config, predict_input_config): """Creates a predict `input` function for `Estimator`. Args: model_config: A model_pb2.DetectionModel. predict_input_config: An input_reader_pb2.InputReader. Returns: `input_fn` for `Estimator` in PREDICT mode. """ def _predict_input_fn(params=None): """Decodes serialized tf.Examples and returns `ServingInputReceiver`. Args: params: Parameter dictionary passed from the estimator. Returns: `ServingInputReceiver`. """ del params example = tf.placeholder(dtype=tf.string, shape=[], name='tf_example') num_classes = config_util.get_number_of_classes(model_config) model = model_builder.build(model_config, is_training=False) image_resizer_config = config_util.get_image_resizer_config(model_config) image_resizer_fn = image_resizer_builder.build(image_resizer_config) transform_fn = functools.partial( transform_input_data, model_preprocess_fn=model.preprocess, image_resizer_fn=image_resizer_fn, num_classes=num_classes, data_augmentation_fn=None) decoder = tf_example_decoder.TfExampleDecoder( load_instance_masks=False, num_additional_channels=predict_input_config.num_additional_channels) input_dict = transform_fn(decoder.decode(example)) images = tf.to_float(input_dict[fields.InputDataFields.image]) images = tf.expand_dims(images, axis=0) true_image_shape = tf.expand_dims( input_dict[fields.InputDataFields.true_image_shape], axis=0) return tf.estimator.export.ServingInputReceiver( features={ fields.InputDataFields.image: images, fields.InputDataFields.true_image_shape: true_image_shape}, receiver_tensors={SERVING_FED_EXAMPLE_KEY: example}) return _predict_input_fn
Example #21
Source File: inputs.py From ros_people_object_detection_tensorflow with Apache License 2.0 | 4 votes |
def create_predict_input_fn(model_config): """Creates a predict `input` function for `Estimator`. Args: model_config: A model_pb2.DetectionModel. Returns: `input_fn` for `Estimator` in PREDICT mode. """ def _predict_input_fn(params=None): """Decodes serialized tf.Examples and returns `ServingInputReceiver`. Args: params: Parameter dictionary passed from the estimator. Returns: `ServingInputReceiver`. """ del params example = tf.placeholder(dtype=tf.string, shape=[], name='input_feature') num_classes = config_util.get_number_of_classes(model_config) model = model_builder.build(model_config, is_training=False) image_resizer_config = config_util.get_image_resizer_config(model_config) image_resizer_fn = image_resizer_builder.build(image_resizer_config) transform_fn = functools.partial( transform_input_data, model_preprocess_fn=model.preprocess, image_resizer_fn=image_resizer_fn, num_classes=num_classes, data_augmentation_fn=None) decoder = tf_example_decoder.TfExampleDecoder(load_instance_masks=False) input_dict = transform_fn(decoder.decode(example)) images = tf.to_float(input_dict[fields.InputDataFields.image]) images = tf.expand_dims(images, axis=0) true_image_shape = tf.expand_dims( input_dict[fields.InputDataFields.true_image_shape], axis=0) return tf.estimator.export.ServingInputReceiver( features={ fields.InputDataFields.image: images, fields.InputDataFields.true_image_shape: true_image_shape}, receiver_tensors={SERVING_FED_EXAMPLE_KEY: example}) return _predict_input_fn
Example #22
Source File: inputs.py From models with Apache License 2.0 | 4 votes |
def create_predict_input_fn(model_config, predict_input_config): """Creates a predict `input` function for `Estimator`. Args: model_config: A model_pb2.DetectionModel. predict_input_config: An input_reader_pb2.InputReader. Returns: `input_fn` for `Estimator` in PREDICT mode. """ def _predict_input_fn(params=None): """Decodes serialized tf.Examples and returns `ServingInputReceiver`. Args: params: Parameter dictionary passed from the estimator. Returns: `ServingInputReceiver`. """ del params example = tf.placeholder(dtype=tf.string, shape=[], name='tf_example') num_classes = config_util.get_number_of_classes(model_config) model_preprocess_fn = INPUT_BUILDER_UTIL_MAP['model_build']( model_config, is_training=False).preprocess image_resizer_config = config_util.get_image_resizer_config(model_config) image_resizer_fn = image_resizer_builder.build(image_resizer_config) transform_fn = functools.partial( transform_input_data, model_preprocess_fn=model_preprocess_fn, image_resizer_fn=image_resizer_fn, num_classes=num_classes, data_augmentation_fn=None) decoder = tf_example_decoder.TfExampleDecoder( load_instance_masks=False, num_additional_channels=predict_input_config.num_additional_channels) input_dict = transform_fn(decoder.decode(example)) images = tf.cast(input_dict[fields.InputDataFields.image], dtype=tf.float32) images = tf.expand_dims(images, axis=0) true_image_shape = tf.expand_dims( input_dict[fields.InputDataFields.true_image_shape], axis=0) return tf.estimator.export.ServingInputReceiver( features={ fields.InputDataFields.image: images, fields.InputDataFields.true_image_shape: true_image_shape}, receiver_tensors={SERVING_FED_EXAMPLE_KEY: example}) return _predict_input_fn
Example #23
Source File: inputs.py From Person-Detection-and-Tracking with MIT License | 4 votes |
def create_predict_input_fn(model_config): """Creates a predict `input` function for `Estimator`. Args: model_config: A model_pb2.DetectionModel. Returns: `input_fn` for `Estimator` in PREDICT mode. """ def _predict_input_fn(params=None): """Decodes serialized tf.Examples and returns `ServingInputReceiver`. Args: params: Parameter dictionary passed from the estimator. Returns: `ServingInputReceiver`. """ del params example = tf.placeholder(dtype=tf.string, shape=[], name='input_feature') num_classes = config_util.get_number_of_classes(model_config) model = model_builder.build(model_config, is_training=False) image_resizer_config = config_util.get_image_resizer_config(model_config) image_resizer_fn = image_resizer_builder.build(image_resizer_config) transform_fn = functools.partial( transform_input_data, model_preprocess_fn=model.preprocess, image_resizer_fn=image_resizer_fn, num_classes=num_classes, data_augmentation_fn=None) decoder = tf_example_decoder.TfExampleDecoder(load_instance_masks=False) input_dict = transform_fn(decoder.decode(example)) images = tf.to_float(input_dict[fields.InputDataFields.image]) images = tf.expand_dims(images, axis=0) true_image_shape = tf.expand_dims( input_dict[fields.InputDataFields.true_image_shape], axis=0) return tf.estimator.export.ServingInputReceiver( features={ fields.InputDataFields.image: images, fields.InputDataFields.true_image_shape: true_image_shape}, receiver_tensors={SERVING_FED_EXAMPLE_KEY: example}) return _predict_input_fn
Example #24
Source File: inputs.py From g-tensorflow-models with Apache License 2.0 | 4 votes |
def create_predict_input_fn(model_config, predict_input_config): """Creates a predict `input` function for `Estimator`. Args: model_config: A model_pb2.DetectionModel. predict_input_config: An input_reader_pb2.InputReader. Returns: `input_fn` for `Estimator` in PREDICT mode. """ def _predict_input_fn(params=None): """Decodes serialized tf.Examples and returns `ServingInputReceiver`. Args: params: Parameter dictionary passed from the estimator. Returns: `ServingInputReceiver`. """ del params example = tf.placeholder(dtype=tf.string, shape=[], name='tf_example') num_classes = config_util.get_number_of_classes(model_config) model = model_builder.build(model_config, is_training=False) image_resizer_config = config_util.get_image_resizer_config(model_config) image_resizer_fn = image_resizer_builder.build(image_resizer_config) transform_fn = functools.partial( transform_input_data, model_preprocess_fn=model.preprocess, image_resizer_fn=image_resizer_fn, num_classes=num_classes, data_augmentation_fn=None) decoder = tf_example_decoder.TfExampleDecoder( load_instance_masks=False, num_additional_channels=predict_input_config.num_additional_channels) input_dict = transform_fn(decoder.decode(example)) images = tf.to_float(input_dict[fields.InputDataFields.image]) images = tf.expand_dims(images, axis=0) true_image_shape = tf.expand_dims( input_dict[fields.InputDataFields.true_image_shape], axis=0) return tf.estimator.export.ServingInputReceiver( features={ fields.InputDataFields.image: images, fields.InputDataFields.true_image_shape: true_image_shape}, receiver_tensors={SERVING_FED_EXAMPLE_KEY: example}) return _predict_input_fn
Example #25
Source File: inputs.py From ros_tensorflow with Apache License 2.0 | 4 votes |
def create_predict_input_fn(model_config): """Creates a predict `input` function for `Estimator`. Args: model_config: A model_pb2.DetectionModel. Returns: `input_fn` for `Estimator` in PREDICT mode. """ def _predict_input_fn(params=None): """Decodes serialized tf.Examples and returns `ServingInputReceiver`. Args: params: Parameter dictionary passed from the estimator. Returns: `ServingInputReceiver`. """ del params example = tf.placeholder(dtype=tf.string, shape=[], name='input_feature') num_classes = config_util.get_number_of_classes(model_config) model = model_builder.build(model_config, is_training=False) image_resizer_config = config_util.get_image_resizer_config(model_config) image_resizer_fn = image_resizer_builder.build(image_resizer_config) transform_fn = functools.partial( transform_input_data, model_preprocess_fn=model.preprocess, image_resizer_fn=image_resizer_fn, num_classes=num_classes, data_augmentation_fn=None) decoder = tf_example_decoder.TfExampleDecoder(load_instance_masks=False) input_dict = transform_fn(decoder.decode(example)) images = tf.to_float(input_dict[fields.InputDataFields.image]) images = tf.expand_dims(images, axis=0) true_image_shape = tf.expand_dims( input_dict[fields.InputDataFields.true_image_shape], axis=0) return tf.estimator.export.ServingInputReceiver( features={ fields.InputDataFields.image: images, fields.InputDataFields.true_image_shape: true_image_shape}, receiver_tensors={SERVING_FED_EXAMPLE_KEY: example}) return _predict_input_fn
Example #26
Source File: inputs.py From Traffic-Rule-Violation-Detection-System with MIT License | 4 votes |
def create_predict_input_fn(model_config): """Creates a predict `input` function for `Estimator`. Args: model_config: A model_pb2.DetectionModel. Returns: `input_fn` for `Estimator` in PREDICT mode. """ def _predict_input_fn(params=None): """Decodes serialized tf.Examples and returns `ServingInputReceiver`. Args: params: Parameter dictionary passed from the estimator. Returns: `ServingInputReceiver`. """ del params example = tf.placeholder(dtype=tf.string, shape=[], name='input_feature') num_classes = config_util.get_number_of_classes(model_config) model = model_builder.build(model_config, is_training=False) image_resizer_config = config_util.get_image_resizer_config(model_config) image_resizer_fn = image_resizer_builder.build(image_resizer_config) transform_fn = functools.partial( transform_input_data, model_preprocess_fn=model.preprocess, image_resizer_fn=image_resizer_fn, num_classes=num_classes, data_augmentation_fn=None) decoder = tf_example_decoder.TfExampleDecoder(load_instance_masks=False) input_dict = transform_fn(decoder.decode(example)) images = tf.to_float(input_dict[fields.InputDataFields.image]) images = tf.expand_dims(images, axis=0) return tf.estimator.export.ServingInputReceiver( features={fields.InputDataFields.image: images}, receiver_tensors={SERVING_FED_EXAMPLE_KEY: example}) return _predict_input_fn
Example #27
Source File: inputs.py From Gun-Detector with Apache License 2.0 | 4 votes |
def create_predict_input_fn(model_config): """Creates a predict `input` function for `Estimator`. Args: model_config: A model_pb2.DetectionModel. Returns: `input_fn` for `Estimator` in PREDICT mode. """ def _predict_input_fn(params=None): """Decodes serialized tf.Examples and returns `ServingInputReceiver`. Args: params: Parameter dictionary passed from the estimator. Returns: `ServingInputReceiver`. """ del params example = tf.placeholder(dtype=tf.string, shape=[], name='input_feature') num_classes = config_util.get_number_of_classes(model_config) model = model_builder.build(model_config, is_training=False) image_resizer_config = config_util.get_image_resizer_config(model_config) image_resizer_fn = image_resizer_builder.build(image_resizer_config) transform_fn = functools.partial( transform_input_data, model_preprocess_fn=model.preprocess, image_resizer_fn=image_resizer_fn, num_classes=num_classes, data_augmentation_fn=None) decoder = tf_example_decoder.TfExampleDecoder(load_instance_masks=False) input_dict = transform_fn(decoder.decode(example)) images = tf.to_float(input_dict[fields.InputDataFields.image]) images = tf.expand_dims(images, axis=0) true_image_shape = tf.expand_dims( input_dict[fields.InputDataFields.true_image_shape], axis=0) return tf.estimator.export.ServingInputReceiver( features={ fields.InputDataFields.image: images, fields.InputDataFields.true_image_shape: true_image_shape}, receiver_tensors={SERVING_FED_EXAMPLE_KEY: example}) return _predict_input_fn
Example #28
Source File: inputs.py From Elphas with Apache License 2.0 | 4 votes |
def create_predict_input_fn(model_config): """Creates a predict `input` function for `Estimator`. Args: model_config: A model_pb2.DetectionModel. Returns: `input_fn` for `Estimator` in PREDICT mode. """ def _predict_input_fn(params=None): """Decodes serialized tf.Examples and returns `ServingInputReceiver`. Args: params: Parameter dictionary passed from the estimator. Returns: `ServingInputReceiver`. """ del params example = tf.placeholder( dtype=tf.string, shape=[], name='input_feature') num_classes = config_util.get_number_of_classes(model_config) model = model_builder.build(model_config, is_training=False) image_resizer_config = config_util.get_image_resizer_config( model_config) image_resizer_fn = image_resizer_builder.build(image_resizer_config) transform_fn = functools.partial( transform_input_data, model_preprocess_fn=model.preprocess, image_resizer_fn=image_resizer_fn, num_classes=num_classes, data_augmentation_fn=None) decoder = tf_example_decoder.TfExampleDecoder( load_instance_masks=False) input_dict = transform_fn(decoder.decode(example)) images = tf.to_float(input_dict[fields.InputDataFields.image]) images = tf.expand_dims(images, axis=0) return tf.estimator.export.ServingInputReceiver( features={fields.InputDataFields.image: images}, receiver_tensors={SERVING_FED_EXAMPLE_KEY: example}) return _predict_input_fn
Example #29
Source File: inputs.py From vehicle_counting_tensorflow with MIT License | 4 votes |
def create_predict_input_fn(model_config, predict_input_config): """Creates a predict `input` function for `Estimator`. Args: model_config: A model_pb2.DetectionModel. predict_input_config: An input_reader_pb2.InputReader. Returns: `input_fn` for `Estimator` in PREDICT mode. """ def _predict_input_fn(params=None): """Decodes serialized tf.Examples and returns `ServingInputReceiver`. Args: params: Parameter dictionary passed from the estimator. Returns: `ServingInputReceiver`. """ del params example = tf.placeholder(dtype=tf.string, shape=[], name='tf_example') num_classes = config_util.get_number_of_classes(model_config) model = model_builder.build(model_config, is_training=False) image_resizer_config = config_util.get_image_resizer_config(model_config) image_resizer_fn = image_resizer_builder.build(image_resizer_config) transform_fn = functools.partial( transform_input_data, model_preprocess_fn=model.preprocess, image_resizer_fn=image_resizer_fn, num_classes=num_classes, data_augmentation_fn=None) decoder = tf_example_decoder.TfExampleDecoder( load_instance_masks=False, num_additional_channels=predict_input_config.num_additional_channels) input_dict = transform_fn(decoder.decode(example)) images = tf.to_float(input_dict[fields.InputDataFields.image]) images = tf.expand_dims(images, axis=0) true_image_shape = tf.expand_dims( input_dict[fields.InputDataFields.true_image_shape], axis=0) return tf.estimator.export.ServingInputReceiver( features={ fields.InputDataFields.image: images, fields.InputDataFields.true_image_shape: true_image_shape}, receiver_tensors={SERVING_FED_EXAMPLE_KEY: example}) return _predict_input_fn
Example #30
Source File: inputs.py From BMW-TensorFlow-Training-GUI with Apache License 2.0 | 4 votes |
def create_predict_input_fn(model_config, predict_input_config): """Creates a predict `input` function for `Estimator`. Args: model_config: A model_pb2.DetectionModel. predict_input_config: An input_reader_pb2.InputReader. Returns: `input_fn` for `Estimator` in PREDICT mode. """ def _predict_input_fn(params=None): """Decodes serialized tf.Examples and returns `ServingInputReceiver`. Args: params: Parameter dictionary passed from the estimator. Returns: `ServingInputReceiver`. """ del params example = tf.placeholder(dtype=tf.string, shape=[], name='tf_example') num_classes = config_util.get_number_of_classes(model_config) model = model_builder.build(model_config, is_training=False) image_resizer_config = config_util.get_image_resizer_config(model_config) image_resizer_fn = image_resizer_builder.build(image_resizer_config) transform_fn = functools.partial( transform_input_data, model_preprocess_fn=model.preprocess, image_resizer_fn=image_resizer_fn, num_classes=num_classes, data_augmentation_fn=None) decoder = tf_example_decoder.TfExampleDecoder( load_instance_masks=False, num_additional_channels=predict_input_config.num_additional_channels) input_dict = transform_fn(decoder.decode(example)) images = tf.to_float(input_dict[fields.InputDataFields.image]) images = tf.expand_dims(images, axis=0) true_image_shape = tf.expand_dims( input_dict[fields.InputDataFields.true_image_shape], axis=0) return tf.estimator.export.ServingInputReceiver( features={ fields.InputDataFields.image: images, fields.InputDataFields.true_image_shape: true_image_shape}, receiver_tensors={SERVING_FED_EXAMPLE_KEY: example}) return _predict_input_fn