Python object_detection.utils.config_util.merge_external_params_with_configs() Examples

The following are 30 code examples of object_detection.utils.config_util.merge_external_params_with_configs(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module object_detection.utils.config_util , or try the search function .
Example #1
Source File: config_util_test.py    From Traffic-Rule-Violation-Detection-System with MIT License 6 votes vote down vote up
def testNewLabelMapPath(self):
    """Tests that label map path can be overwritten in input readers."""
    original_label_map_path = "path/to/original/label_map"
    new_label_map_path = "path//to/new/label_map"
    pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config")

    pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
    train_input_reader = pipeline_config.train_input_reader
    train_input_reader.label_map_path = original_label_map_path
    eval_input_reader = pipeline_config.eval_input_reader
    eval_input_reader.label_map_path = original_label_map_path
    _write_config(pipeline_config, pipeline_config_path)

    configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
    configs = config_util.merge_external_params_with_configs(
        configs, label_map_path=new_label_map_path)
    self.assertEqual(new_label_map_path,
                     configs["train_input_config"].label_map_path)
    self.assertEqual(new_label_map_path,
                     configs["eval_input_config"].label_map_path) 
Example #2
Source File: config_util_test.py    From vehicle_counting_tensorflow with MIT License 6 votes vote down vote up
def testNewFocalLossParameters(self):
    """Tests that the loss weight ratio is updated appropriately."""
    original_alpha = 1.0
    original_gamma = 1.0
    new_alpha = 0.3
    new_gamma = 2.0
    hparams = tf.contrib.training.HParams(
        focal_loss_alpha=new_alpha, focal_loss_gamma=new_gamma)
    pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config")

    pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
    classification_loss = pipeline_config.model.ssd.loss.classification_loss
    classification_loss.weighted_sigmoid_focal.alpha = original_alpha
    classification_loss.weighted_sigmoid_focal.gamma = original_gamma
    _write_config(pipeline_config, pipeline_config_path)

    configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
    configs = config_util.merge_external_params_with_configs(configs, hparams)
    classification_loss = configs["model"].ssd.loss.classification_loss
    self.assertAlmostEqual(new_alpha,
                           classification_loss.weighted_sigmoid_focal.alpha)
    self.assertAlmostEqual(new_gamma,
                           classification_loss.weighted_sigmoid_focal.gamma) 
Example #3
Source File: config_util_test.py    From vehicle_counting_tensorflow with MIT License 6 votes vote down vote up
def testNewTrainInputPath(self):
    """Tests that train input path can be overwritten with single file."""
    original_train_path = ["path/to/data"]
    new_train_path = "another/path/to/data"
    pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config")

    pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
    reader_config = pipeline_config.train_input_reader.tf_record_input_reader
    reader_config.input_path.extend(original_train_path)
    _write_config(pipeline_config, pipeline_config_path)

    configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
    override_dict = {"train_input_path": new_train_path}
    configs = config_util.merge_external_params_with_configs(
        configs, kwargs_dict=override_dict)
    reader_config = configs["train_input_config"].tf_record_input_reader
    final_path = reader_config.input_path
    self.assertEqual([new_train_path], final_path) 
Example #4
Source File: config_util_test.py    From vehicle_counting_tensorflow with MIT License 6 votes vote down vote up
def testMergingKeywordArguments(self):
    """Tests that keyword arguments get merged as do hyperparameters."""
    original_num_train_steps = 100
    desired_num_train_steps = 10
    pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config")

    pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
    pipeline_config.train_config.num_steps = original_num_train_steps
    _write_config(pipeline_config, pipeline_config_path)

    configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
    override_dict = {"train_steps": desired_num_train_steps}
    configs = config_util.merge_external_params_with_configs(
        configs, kwargs_dict=override_dict)
    train_steps = configs["train_config"].num_steps
    self.assertEqual(desired_num_train_steps, train_steps) 
Example #5
Source File: config_util_test.py    From vehicle_counting_tensorflow with MIT License 6 votes vote down vote up
def testNewLabelMapPath(self):
    """Tests that label map path can be overwritten in input readers."""
    original_label_map_path = "path/to/original/label_map"
    new_label_map_path = "path//to/new/label_map"
    pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config")

    pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
    train_input_reader = pipeline_config.train_input_reader
    train_input_reader.label_map_path = original_label_map_path
    eval_input_reader = pipeline_config.eval_input_reader.add()
    eval_input_reader.label_map_path = original_label_map_path
    _write_config(pipeline_config, pipeline_config_path)

    configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
    override_dict = {"label_map_path": new_label_map_path}
    configs = config_util.merge_external_params_with_configs(
        configs, kwargs_dict=override_dict)
    self.assertEqual(new_label_map_path,
                     configs["train_input_config"].label_map_path)
    for eval_input_config in configs["eval_input_configs"]:
      self.assertEqual(new_label_map_path, eval_input_config.label_map_path) 
Example #6
Source File: config_util_test.py    From ros_people_object_detection_tensorflow with Apache License 2.0 6 votes vote down vote up
def testMergingKeywordArguments(self):
    """Tests that keyword arguments get merged as do hyperparameters."""
    original_num_train_steps = 100
    original_num_eval_steps = 5
    desired_num_train_steps = 10
    desired_num_eval_steps = 1
    pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config")

    pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
    pipeline_config.train_config.num_steps = original_num_train_steps
    pipeline_config.eval_config.num_examples = original_num_eval_steps
    _write_config(pipeline_config, pipeline_config_path)

    configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
    configs = config_util.merge_external_params_with_configs(
        configs,
        train_steps=desired_num_train_steps,
        eval_steps=desired_num_eval_steps)
    train_steps = configs["train_config"].num_steps
    eval_steps = configs["eval_config"].num_examples
    self.assertEqual(desired_num_train_steps, train_steps)
    self.assertEqual(desired_num_eval_steps, eval_steps) 
Example #7
Source File: config_util_test.py    From ros_people_object_detection_tensorflow with Apache License 2.0 6 votes vote down vote up
def testNewTrainInputPath(self):
    """Tests that train input path can be overwritten with single file."""
    original_train_path = ["path/to/data"]
    new_train_path = "another/path/to/data"
    pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config")

    pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
    reader_config = pipeline_config.train_input_reader.tf_record_input_reader
    reader_config.input_path.extend(original_train_path)
    _write_config(pipeline_config, pipeline_config_path)

    configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
    configs = config_util.merge_external_params_with_configs(
        configs, train_input_path=new_train_path)
    reader_config = configs["train_input_config"].tf_record_input_reader
    final_path = reader_config.input_path
    self.assertEqual([new_train_path], final_path) 
Example #8
Source File: config_util_test.py    From ros_people_object_detection_tensorflow with Apache License 2.0 6 votes vote down vote up
def testNewTrainInputPathList(self):
    """Tests that train input path can be overwritten with multiple files."""
    original_train_path = ["path/to/data"]
    new_train_path = ["another/path/to/data", "yet/another/path/to/data"]
    pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config")

    pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
    reader_config = pipeline_config.train_input_reader.tf_record_input_reader
    reader_config.input_path.extend(original_train_path)
    _write_config(pipeline_config, pipeline_config_path)

    configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
    configs = config_util.merge_external_params_with_configs(
        configs, train_input_path=new_train_path)
    reader_config = configs["train_input_config"].tf_record_input_reader
    final_path = reader_config.input_path
    self.assertEqual(new_train_path, final_path) 
Example #9
Source File: config_util_test.py    From ros_people_object_detection_tensorflow with Apache License 2.0 6 votes vote down vote up
def testNewLabelMapPath(self):
    """Tests that label map path can be overwritten in input readers."""
    original_label_map_path = "path/to/original/label_map"
    new_label_map_path = "path//to/new/label_map"
    pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config")

    pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
    train_input_reader = pipeline_config.train_input_reader
    train_input_reader.label_map_path = original_label_map_path
    eval_input_reader = pipeline_config.eval_input_reader
    eval_input_reader.label_map_path = original_label_map_path
    _write_config(pipeline_config, pipeline_config_path)

    configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
    configs = config_util.merge_external_params_with_configs(
        configs, label_map_path=new_label_map_path)
    self.assertEqual(new_label_map_path,
                     configs["train_input_config"].label_map_path)
    self.assertEqual(new_label_map_path,
                     configs["eval_input_config"].label_map_path) 
Example #10
Source File: config_util_test.py    From ros_people_object_detection_tensorflow with Apache License 2.0 6 votes vote down vote up
def testDontOverwriteEmptyLabelMapPath(self):
    """Tests that label map path will not by overwritten with empty string."""
    original_label_map_path = "path/to/original/label_map"
    new_label_map_path = ""
    pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config")

    pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
    train_input_reader = pipeline_config.train_input_reader
    train_input_reader.label_map_path = original_label_map_path
    eval_input_reader = pipeline_config.eval_input_reader
    eval_input_reader.label_map_path = original_label_map_path
    _write_config(pipeline_config, pipeline_config_path)

    configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
    configs = config_util.merge_external_params_with_configs(
        configs, label_map_path=new_label_map_path)
    self.assertEqual(original_label_map_path,
                     configs["train_input_config"].label_map_path)
    self.assertEqual(original_label_map_path,
                     configs["eval_input_config"].label_map_path) 
Example #11
Source File: inputs_test.py    From ros_people_object_detection_tensorflow with Apache License 2.0 6 votes vote down vote up
def _get_configs_for_model(model_name):
  """Returns configurations for model."""
  fname = os.path.join(
      FLAGS.test_srcdir,
      ('google3/third_party/tensorflow_models/'
       'object_detection/samples/configs/' + model_name + '.config'))
  label_map_path = os.path.join(FLAGS.test_srcdir,
                                ('google3/third_party/tensorflow_models/'
                                 'object_detection/data/pet_label_map.pbtxt'))
  data_path = os.path.join(FLAGS.test_srcdir,
                           ('google3/third_party/tensorflow_models/'
                            'object_detection/test_data/pets_examples.record'))
  configs = config_util.get_configs_from_pipeline_file(fname)
  return config_util.merge_external_params_with_configs(
      configs,
      train_input_path=data_path,
      eval_input_path=data_path,
      label_map_path=label_map_path) 
Example #12
Source File: config_util_test.py    From Gun-Detector with Apache License 2.0 6 votes vote down vote up
def testNewMomentumOptimizerValue(self):
    """Tests that new momentum value is updated appropriately."""
    original_momentum_value = 0.4
    hparams = tf.contrib.training.HParams(momentum_optimizer_value=1.1)
    pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config")

    pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
    optimizer_config = pipeline_config.train_config.optimizer.rms_prop_optimizer
    optimizer_config.momentum_optimizer_value = original_momentum_value
    _write_config(pipeline_config, pipeline_config_path)

    configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
    configs = config_util.merge_external_params_with_configs(configs, hparams)
    optimizer_config = configs["train_config"].optimizer.rms_prop_optimizer
    new_momentum_value = optimizer_config.momentum_optimizer_value
    self.assertAlmostEqual(1.0, new_momentum_value)  # Clipped to 1.0. 
Example #13
Source File: config_util_test.py    From yolo_v2 with Apache License 2.0 6 votes vote down vote up
def testNewTrainInputPath(self):
    """Tests that train input path can be overwritten with single file."""
    original_train_path = ["path/to/data"]
    new_train_path = "another/path/to/data"
    pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config")

    pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
    reader_config = pipeline_config.train_input_reader.tf_record_input_reader
    reader_config.input_path.extend(original_train_path)
    _write_config(pipeline_config, pipeline_config_path)

    configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
    configs = config_util.merge_external_params_with_configs(
        configs, train_input_path=new_train_path)
    reader_config = configs["train_input_config"].tf_record_input_reader
    final_path = reader_config.input_path
    self.assertEqual([new_train_path], final_path) 
Example #14
Source File: config_util_test.py    From yolo_v2 with Apache License 2.0 6 votes vote down vote up
def testMergingKeywordArguments(self):
    """Tests that keyword arguments get merged as do hyperparameters."""
    original_num_train_steps = 100
    original_num_eval_steps = 5
    desired_num_train_steps = 10
    desired_num_eval_steps = 1
    pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config")

    pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
    pipeline_config.train_config.num_steps = original_num_train_steps
    pipeline_config.eval_config.num_examples = original_num_eval_steps
    _write_config(pipeline_config, pipeline_config_path)

    configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
    configs = config_util.merge_external_params_with_configs(
        configs,
        train_steps=desired_num_train_steps,
        eval_steps=desired_num_eval_steps)
    train_steps = configs["train_config"].num_steps
    eval_steps = configs["eval_config"].num_examples
    self.assertEqual(desired_num_train_steps, train_steps)
    self.assertEqual(desired_num_eval_steps, eval_steps) 
Example #15
Source File: inputs_test.py    From Traffic-Rule-Violation-Detection-System with MIT License 6 votes vote down vote up
def _get_configs_for_model(model_name):
  """Returns configurations for model."""
  # TODO: Make sure these tests work fine outside google3.
  fname = os.path.join(
      FLAGS.test_srcdir,
      ('google3/third_party/tensorflow_models/'
       'object_detection/samples/configs/' + model_name + '.config'))
  label_map_path = os.path.join(FLAGS.test_srcdir,
                                ('google3/third_party/tensorflow_models/'
                                 'object_detection/data/pet_label_map.pbtxt'))
  data_path = os.path.join(FLAGS.test_srcdir,
                           ('google3/third_party/tensorflow_models/'
                            'object_detection/test_data/pets_examples.record'))
  configs = config_util.get_configs_from_pipeline_file(fname)
  return config_util.merge_external_params_with_configs(
      configs,
      train_input_path=data_path,
      eval_input_path=data_path,
      label_map_path=label_map_path) 
Example #16
Source File: config_util_test.py    From ros_people_object_detection_tensorflow with Apache License 2.0 6 votes vote down vote up
def testNewClassificationLocalizationWeightRatio(self):
    """Tests that the loss weight ratio is updated appropriately."""
    original_localization_weight = 0.1
    original_classification_weight = 0.2
    new_weight_ratio = 5.0
    hparams = tf.contrib.training.HParams(
        classification_localization_weight_ratio=new_weight_ratio)
    pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config")

    pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
    pipeline_config.model.ssd.loss.localization_weight = (
        original_localization_weight)
    pipeline_config.model.ssd.loss.classification_weight = (
        original_classification_weight)
    _write_config(pipeline_config, pipeline_config_path)

    configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
    configs = config_util.merge_external_params_with_configs(configs, hparams)
    loss = configs["model"].ssd.loss
    self.assertAlmostEqual(1.0, loss.localization_weight)
    self.assertAlmostEqual(new_weight_ratio, loss.classification_weight) 
Example #17
Source File: config_util_test.py    From Person-Detection-and-Tracking with MIT License 6 votes vote down vote up
def testNewClassificationLocalizationWeightRatio(self):
    """Tests that the loss weight ratio is updated appropriately."""
    original_localization_weight = 0.1
    original_classification_weight = 0.2
    new_weight_ratio = 5.0
    hparams = tf.contrib.training.HParams(
        classification_localization_weight_ratio=new_weight_ratio)
    pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config")

    pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
    pipeline_config.model.ssd.loss.localization_weight = (
        original_localization_weight)
    pipeline_config.model.ssd.loss.classification_weight = (
        original_classification_weight)
    _write_config(pipeline_config, pipeline_config_path)

    configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
    configs = config_util.merge_external_params_with_configs(configs, hparams)
    loss = configs["model"].ssd.loss
    self.assertAlmostEqual(1.0, loss.localization_weight)
    self.assertAlmostEqual(new_weight_ratio, loss.classification_weight) 
Example #18
Source File: config_util_test.py    From Person-Detection-and-Tracking with MIT License 6 votes vote down vote up
def testNewFocalLossParameters(self):
    """Tests that the loss weight ratio is updated appropriately."""
    original_alpha = 1.0
    original_gamma = 1.0
    new_alpha = 0.3
    new_gamma = 2.0
    hparams = tf.contrib.training.HParams(
        focal_loss_alpha=new_alpha, focal_loss_gamma=new_gamma)
    pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config")

    pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
    classification_loss = pipeline_config.model.ssd.loss.classification_loss
    classification_loss.weighted_sigmoid_focal.alpha = original_alpha
    classification_loss.weighted_sigmoid_focal.gamma = original_gamma
    _write_config(pipeline_config, pipeline_config_path)

    configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
    configs = config_util.merge_external_params_with_configs(configs, hparams)
    classification_loss = configs["model"].ssd.loss.classification_loss
    self.assertAlmostEqual(new_alpha,
                           classification_loss.weighted_sigmoid_focal.alpha)
    self.assertAlmostEqual(new_gamma,
                           classification_loss.weighted_sigmoid_focal.gamma) 
Example #19
Source File: config_util_test.py    From Person-Detection-and-Tracking with MIT License 6 votes vote down vote up
def testMergingKeywordArguments(self):
    """Tests that keyword arguments get merged as do hyperparameters."""
    original_num_train_steps = 100
    original_num_eval_steps = 5
    desired_num_train_steps = 10
    desired_num_eval_steps = 1
    pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config")

    pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
    pipeline_config.train_config.num_steps = original_num_train_steps
    pipeline_config.eval_config.num_examples = original_num_eval_steps
    _write_config(pipeline_config, pipeline_config_path)

    configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
    configs = config_util.merge_external_params_with_configs(
        configs,
        train_steps=desired_num_train_steps,
        eval_steps=desired_num_eval_steps)
    train_steps = configs["train_config"].num_steps
    eval_steps = configs["eval_config"].num_examples
    self.assertEqual(desired_num_train_steps, train_steps)
    self.assertEqual(desired_num_eval_steps, eval_steps) 
Example #20
Source File: config_util_test.py    From Person-Detection-and-Tracking with MIT License 6 votes vote down vote up
def testNewTrainInputPath(self):
    """Tests that train input path can be overwritten with single file."""
    original_train_path = ["path/to/data"]
    new_train_path = "another/path/to/data"
    pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config")

    pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
    reader_config = pipeline_config.train_input_reader.tf_record_input_reader
    reader_config.input_path.extend(original_train_path)
    _write_config(pipeline_config, pipeline_config_path)

    configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
    configs = config_util.merge_external_params_with_configs(
        configs, train_input_path=new_train_path)
    reader_config = configs["train_input_config"].tf_record_input_reader
    final_path = reader_config.input_path
    self.assertEqual([new_train_path], final_path) 
Example #21
Source File: config_util_test.py    From Person-Detection-and-Tracking with MIT License 6 votes vote down vote up
def testNewTrainInputPathList(self):
    """Tests that train input path can be overwritten with multiple files."""
    original_train_path = ["path/to/data"]
    new_train_path = ["another/path/to/data", "yet/another/path/to/data"]
    pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config")

    pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
    reader_config = pipeline_config.train_input_reader.tf_record_input_reader
    reader_config.input_path.extend(original_train_path)
    _write_config(pipeline_config, pipeline_config_path)

    configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
    configs = config_util.merge_external_params_with_configs(
        configs, train_input_path=new_train_path)
    reader_config = configs["train_input_config"].tf_record_input_reader
    final_path = reader_config.input_path
    self.assertEqual(new_train_path, final_path) 
Example #22
Source File: config_util_test.py    From Person-Detection-and-Tracking with MIT License 6 votes vote down vote up
def testDontOverwriteEmptyLabelMapPath(self):
    """Tests that label map path will not by overwritten with empty string."""
    original_label_map_path = "path/to/original/label_map"
    new_label_map_path = ""
    pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config")

    pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
    train_input_reader = pipeline_config.train_input_reader
    train_input_reader.label_map_path = original_label_map_path
    eval_input_reader = pipeline_config.eval_input_reader
    eval_input_reader.label_map_path = original_label_map_path
    _write_config(pipeline_config, pipeline_config_path)

    configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
    configs = config_util.merge_external_params_with_configs(
        configs, label_map_path=new_label_map_path)
    self.assertEqual(original_label_map_path,
                     configs["train_input_config"].label_map_path)
    self.assertEqual(original_label_map_path,
                     configs["eval_input_config"].label_map_path) 
Example #23
Source File: config_util_test.py    From Person-Detection-and-Tracking with MIT License 6 votes vote down vote up
def testNewMaskType(self):
    """Tests that mask type can be overwritten in input readers."""
    original_mask_type = input_reader_pb2.NUMERICAL_MASKS
    new_mask_type = input_reader_pb2.PNG_MASKS
    pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config")

    pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
    train_input_reader = pipeline_config.train_input_reader
    train_input_reader.mask_type = original_mask_type
    eval_input_reader = pipeline_config.eval_input_reader
    eval_input_reader.mask_type = original_mask_type
    _write_config(pipeline_config, pipeline_config_path)

    configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
    configs = config_util.merge_external_params_with_configs(
        configs, mask_type=new_mask_type)
    self.assertEqual(new_mask_type, configs["train_input_config"].mask_type)
    self.assertEqual(new_mask_type, configs["eval_input_config"].mask_type) 
Example #24
Source File: config_util_test.py    From Traffic-Rule-Violation-Detection-System with MIT License 6 votes vote down vote up
def testNewTrainInputPathList(self):
    """Tests that train input path can be overwritten with multiple files."""
    original_train_path = ["path/to/data"]
    new_train_path = ["another/path/to/data", "yet/another/path/to/data"]
    pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config")

    pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
    reader_config = pipeline_config.train_input_reader.tf_record_input_reader
    reader_config.input_path.extend(original_train_path)
    _write_config(pipeline_config, pipeline_config_path)

    configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
    configs = config_util.merge_external_params_with_configs(
        configs, train_input_path=new_train_path)
    reader_config = configs["train_input_config"].tf_record_input_reader
    final_path = reader_config.input_path
    self.assertEqual(new_train_path, final_path) 
Example #25
Source File: config_util_test.py    From Traffic-Rule-Violation-Detection-System with MIT License 6 votes vote down vote up
def testNewTrainInputPath(self):
    """Tests that train input path can be overwritten with single file."""
    original_train_path = ["path/to/data"]
    new_train_path = "another/path/to/data"
    pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config")

    pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
    reader_config = pipeline_config.train_input_reader.tf_record_input_reader
    reader_config.input_path.extend(original_train_path)
    _write_config(pipeline_config, pipeline_config_path)

    configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
    configs = config_util.merge_external_params_with_configs(
        configs, train_input_path=new_train_path)
    reader_config = configs["train_input_config"].tf_record_input_reader
    final_path = reader_config.input_path
    self.assertEqual([new_train_path], final_path) 
Example #26
Source File: config_util_test.py    From Traffic-Rule-Violation-Detection-System with MIT License 6 votes vote down vote up
def testMergingKeywordArguments(self):
    """Tests that keyword arguments get merged as do hyperparameters."""
    original_num_train_steps = 100
    original_num_eval_steps = 5
    desired_num_train_steps = 10
    desired_num_eval_steps = 1
    pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config")

    pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
    pipeline_config.train_config.num_steps = original_num_train_steps
    pipeline_config.eval_config.num_examples = original_num_eval_steps
    _write_config(pipeline_config, pipeline_config_path)

    configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
    configs = config_util.merge_external_params_with_configs(
        configs,
        train_steps=desired_num_train_steps,
        eval_steps=desired_num_eval_steps)
    train_steps = configs["train_config"].num_steps
    eval_steps = configs["eval_config"].num_examples
    self.assertEqual(desired_num_train_steps, train_steps)
    self.assertEqual(desired_num_eval_steps, eval_steps) 
Example #27
Source File: config_util_test.py    From Traffic-Rule-Violation-Detection-System with MIT License 6 votes vote down vote up
def testNewFocalLossParameters(self):
    """Tests that the loss weight ratio is updated appropriately."""
    original_alpha = 1.0
    original_gamma = 1.0
    new_alpha = 0.3
    new_gamma = 2.0
    hparams = tf.contrib.training.HParams(
        focal_loss_alpha=new_alpha, focal_loss_gamma=new_gamma)
    pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config")

    pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
    classification_loss = pipeline_config.model.ssd.loss.classification_loss
    classification_loss.weighted_sigmoid_focal.alpha = original_alpha
    classification_loss.weighted_sigmoid_focal.gamma = original_gamma
    _write_config(pipeline_config, pipeline_config_path)

    configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
    configs = config_util.merge_external_params_with_configs(configs, hparams)
    classification_loss = configs["model"].ssd.loss.classification_loss
    self.assertAlmostEqual(new_alpha,
                           classification_loss.weighted_sigmoid_focal.alpha)
    self.assertAlmostEqual(new_gamma,
                           classification_loss.weighted_sigmoid_focal.gamma) 
Example #28
Source File: config_util_test.py    From Traffic-Rule-Violation-Detection-System with MIT License 6 votes vote down vote up
def testNewMomentumOptimizerValue(self):
    """Tests that new momentum value is updated appropriately."""
    original_momentum_value = 0.4
    hparams = tf.contrib.training.HParams(momentum_optimizer_value=1.1)
    pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config")

    pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
    optimizer_config = pipeline_config.train_config.optimizer.rms_prop_optimizer
    optimizer_config.momentum_optimizer_value = original_momentum_value
    _write_config(pipeline_config, pipeline_config_path)

    configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
    configs = config_util.merge_external_params_with_configs(configs, hparams)
    optimizer_config = configs["train_config"].optimizer.rms_prop_optimizer
    new_momentum_value = optimizer_config.momentum_optimizer_value
    self.assertAlmostEqual(1.0, new_momentum_value)  # Clipped to 1.0. 
Example #29
Source File: config_util_test.py    From yolo_v2 with Apache License 2.0 6 votes vote down vote up
def testNewClassificationLocalizationWeightRatio(self):
    """Tests that the loss weight ratio is updated appropriately."""
    original_localization_weight = 0.1
    original_classification_weight = 0.2
    new_weight_ratio = 5.0
    hparams = tf.HParams(
        classification_localization_weight_ratio=new_weight_ratio)
    pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config")

    pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
    pipeline_config.model.ssd.loss.localization_weight = (
        original_localization_weight)
    pipeline_config.model.ssd.loss.classification_weight = (
        original_classification_weight)
    _write_config(pipeline_config, pipeline_config_path)

    configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
    configs = config_util.merge_external_params_with_configs(configs, hparams)
    loss = configs["model"].ssd.loss
    self.assertAlmostEqual(1.0, loss.localization_weight)
    self.assertAlmostEqual(new_weight_ratio, loss.classification_weight) 
Example #30
Source File: config_util_test.py    From yolo_v2 with Apache License 2.0 6 votes vote down vote up
def testNewMomentumOptimizerValue(self):
    """Tests that new momentum value is updated appropriately."""
    original_momentum_value = 0.4
    hparams = tf.HParams(momentum_optimizer_value=1.1)
    pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config")

    pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
    optimizer_config = pipeline_config.train_config.optimizer.rms_prop_optimizer
    optimizer_config.momentum_optimizer_value = original_momentum_value
    _write_config(pipeline_config, pipeline_config_path)

    configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
    configs = config_util.merge_external_params_with_configs(configs, hparams)
    optimizer_config = configs["train_config"].optimizer.rms_prop_optimizer
    new_momentum_value = optimizer_config.momentum_optimizer_value
    self.assertAlmostEqual(1.0, new_momentum_value)  # Clipped to 1.0.