Python baselines.common.mpi_running_mean_std.RunningMeanStd() Examples
The following are 30
code examples of baselines.common.mpi_running_mean_std.RunningMeanStd().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
baselines.common.mpi_running_mean_std
, or try the search function
.
Example #1
Source File: mlp_policy.py From self-imitation-learning with MIT License | 5 votes |
def _init(self, ob_space, ac_space, hid_size, num_hid_layers, gaussian_fixed_var=True): assert isinstance(ob_space, gym.spaces.Box) self.pdtype = pdtype = make_pdtype(ac_space) sequence_length = None ob = U.get_placeholder(name="ob", dtype=tf.float32, shape=[sequence_length] + list(ob_space.shape)) with tf.variable_scope("obfilter"): self.ob_rms = RunningMeanStd(shape=ob_space.shape) obz = tf.clip_by_value((ob - self.ob_rms.mean) / self.ob_rms.std, -5.0, 5.0) last_out = obz for i in range(num_hid_layers): last_out = tf.nn.tanh(dense(last_out, hid_size, "vffc%i" % (i+1), weight_init=U.normc_initializer(1.0))) self.vpred = dense(last_out, 1, "vffinal", weight_init=U.normc_initializer(1.0))[:, 0] last_out = obz for i in range(num_hid_layers): last_out = tf.nn.tanh(dense(last_out, hid_size, "polfc%i" % (i+1), weight_init=U.normc_initializer(1.0))) if gaussian_fixed_var and isinstance(ac_space, gym.spaces.Box): mean = dense(last_out, pdtype.param_shape()[0]//2, "polfinal", U.normc_initializer(0.01)) logstd = tf.get_variable(name="logstd", shape=[1, pdtype.param_shape()[0]//2], initializer=tf.zeros_initializer()) pdparam = tf.concat([mean, mean * 0.0 + logstd], axis=1) else: pdparam = dense(last_out, pdtype.param_shape()[0], "polfinal", U.normc_initializer(0.01)) self.pd = pdtype.pdfromflat(pdparam) self.state_in = [] self.state_out = [] # change for BC stochastic = U.get_placeholder(name="stochastic", dtype=tf.bool, shape=()) ac = U.switch(stochastic, self.pd.sample(), self.pd.mode()) self.ac = ac self._act = U.function([stochastic, ob], [ac, self.vpred])
Example #2
Source File: adversary.py From lirpg with MIT License | 5 votes |
def build_graph(self, obs_ph, acs_ph, reuse=False): with tf.variable_scope(self.scope): if reuse: tf.get_variable_scope().reuse_variables() with tf.variable_scope("obfilter"): self.obs_rms = RunningMeanStd(shape=self.observation_shape) obs = (obs_ph - self.obs_rms.mean / self.obs_rms.std) _input = tf.concat([obs, acs_ph], axis=1) # concatenate the two input -> form a transition p_h1 = tf.contrib.layers.fully_connected(_input, self.hidden_size, activation_fn=tf.nn.tanh) p_h2 = tf.contrib.layers.fully_connected(p_h1, self.hidden_size, activation_fn=tf.nn.tanh) logits = tf.contrib.layers.fully_connected(p_h2, 1, activation_fn=tf.identity) return logits
Example #3
Source File: models.py From ICML2019-TREX with MIT License | 5 votes |
def _normalize_clip_observation(x, clip_range=[-5.0, 5.0]): rms = RunningMeanStd(shape=x.shape[1:]) norm_x = tf.clip_by_value((x - rms.mean) / rms.std, min(clip_range), max(clip_range)) return norm_x, rms
Example #4
Source File: mlp_policy.py From ICML2019-TREX with MIT License | 5 votes |
def _init(self, ob_space, ac_space, hid_size, num_hid_layers, gaussian_fixed_var=True): assert isinstance(ob_space, gym.spaces.Box) self.pdtype = pdtype = make_pdtype(ac_space) sequence_length = None ob = U.get_placeholder(name="ob", dtype=tf.float32, shape=[sequence_length] + list(ob_space.shape)) with tf.variable_scope("obfilter"): self.ob_rms = RunningMeanStd(shape=ob_space.shape) obz = tf.clip_by_value((ob - self.ob_rms.mean) / self.ob_rms.std, -5.0, 5.0) last_out = obz for i in range(num_hid_layers): last_out = tf.nn.tanh(dense(last_out, hid_size, "vffc%i" % (i+1), weight_init=U.normc_initializer(1.0))) self.vpred = dense(last_out, 1, "vffinal", weight_init=U.normc_initializer(1.0))[:, 0] last_out = obz for i in range(num_hid_layers): last_out = tf.nn.tanh(dense(last_out, hid_size, "polfc%i" % (i+1), weight_init=U.normc_initializer(1.0))) if gaussian_fixed_var and isinstance(ac_space, gym.spaces.Box): mean = dense(last_out, pdtype.param_shape()[0]//2, "polfinal", U.normc_initializer(0.01)) logstd = tf.get_variable(name="logstd", shape=[1, pdtype.param_shape()[0]//2], initializer=tf.zeros_initializer()) pdparam = tf.concat([mean, mean * 0.0 + logstd], axis=1) else: pdparam = dense(last_out, pdtype.param_shape()[0], "polfinal", U.normc_initializer(0.01)) self.pd = pdtype.pdfromflat(pdparam) self.state_in = [] self.state_out = [] # change for BC stochastic = U.get_placeholder(name="stochastic", dtype=tf.bool, shape=()) ac = U.switch(stochastic, self.pd.sample(), self.pd.mode()) self.ac = ac self._act = U.function([stochastic, ob], [ac, self.vpred])
Example #5
Source File: mlp_policy.py From ICML2019-TREX with MIT License | 5 votes |
def _init(self, ob_space, ac_space, hid_size, num_hid_layers, gaussian_fixed_var=True): assert isinstance(ob_space, gym.spaces.Box) self.pdtype = pdtype = make_pdtype(ac_space) sequence_length = None ob = U.get_placeholder(name="ob", dtype=tf.float32, shape=[sequence_length] + list(ob_space.shape)) with tf.variable_scope("obfilter"): self.ob_rms = RunningMeanStd(shape=ob_space.shape) with tf.variable_scope('vf'): obz = tf.clip_by_value((ob - self.ob_rms.mean) / self.ob_rms.std, -5.0, 5.0) last_out = obz for i in range(num_hid_layers): last_out = tf.nn.tanh(tf.layers.dense(last_out, hid_size, name="fc%i"%(i+1), kernel_initializer=U.normc_initializer(1.0))) self.vpred = tf.layers.dense(last_out, 1, name='final', kernel_initializer=U.normc_initializer(1.0))[:,0] with tf.variable_scope('pol'): last_out = obz for i in range(num_hid_layers): last_out = tf.nn.tanh(tf.layers.dense(last_out, hid_size, name='fc%i'%(i+1), kernel_initializer=U.normc_initializer(1.0))) if gaussian_fixed_var and isinstance(ac_space, gym.spaces.Box): mean = tf.layers.dense(last_out, pdtype.param_shape()[0]//2, name='final', kernel_initializer=U.normc_initializer(0.01)) logstd = tf.get_variable(name="logstd", shape=[1, pdtype.param_shape()[0]//2], initializer=tf.zeros_initializer()) pdparam = tf.concat([mean, mean * 0.0 + logstd], axis=1) else: pdparam = tf.layers.dense(last_out, pdtype.param_shape()[0], name='final', kernel_initializer=U.normc_initializer(0.01)) self.pd = pdtype.pdfromflat(pdparam) self.state_in = [] self.state_out = [] stochastic = tf.placeholder(dtype=tf.bool, shape=()) ac = U.switch(stochastic, self.pd.sample(), self.pd.mode()) self._act = U.function([stochastic, ob], [ac, self.vpred])
Example #6
Source File: policies.py From ICML2019-TREX with MIT License | 5 votes |
def _normalize_clip_observation(x, clip_range=[-5.0, 5.0]): rms = RunningMeanStd(shape=x.shape[1:]) norm_x = tf.clip_by_value((x - rms.mean) / rms.std, min(clip_range), max(clip_range)) return norm_x, rms
Example #7
Source File: models.py From ICML2019-TREX with MIT License | 5 votes |
def _normalize_clip_observation(x, clip_range=[-5.0, 5.0]): rms = RunningMeanStd(shape=x.shape[1:]) norm_x = tf.clip_by_value((x - rms.mean) / rms.std, min(clip_range), max(clip_range)) return norm_x, rms
Example #8
Source File: adversary.py From sonic_contest with MIT License | 5 votes |
def build_graph(self, obs_ph, acs_ph, reuse=False): with tf.variable_scope(self.scope): if reuse: tf.get_variable_scope().reuse_variables() with tf.variable_scope("obfilter"): self.obs_rms = RunningMeanStd(shape=self.observation_shape) obs = (obs_ph - self.obs_rms.mean / self.obs_rms.std) _input = tf.concat([obs, acs_ph], axis=1) # concatenate the two input -> form a transition p_h1 = tf.contrib.layers.fully_connected(_input, self.hidden_size, activation_fn=tf.nn.tanh) p_h2 = tf.contrib.layers.fully_connected(p_h1, self.hidden_size, activation_fn=tf.nn.tanh) logits = tf.contrib.layers.fully_connected(p_h2, 1, activation_fn=tf.identity) return logits
Example #9
Source File: mlp_policy.py From sonic_contest with MIT License | 5 votes |
def _init(self, ob_space, ac_space, hid_size, num_hid_layers, gaussian_fixed_var=True): assert isinstance(ob_space, gym.spaces.Box) self.pdtype = pdtype = make_pdtype(ac_space) sequence_length = None ob = U.get_placeholder(name="ob", dtype=tf.float32, shape=[sequence_length] + list(ob_space.shape)) with tf.variable_scope("obfilter"): self.ob_rms = RunningMeanStd(shape=ob_space.shape) obz = tf.clip_by_value((ob - self.ob_rms.mean) / self.ob_rms.std, -5.0, 5.0) last_out = obz for i in range(num_hid_layers): last_out = tf.nn.tanh(dense(last_out, hid_size, "vffc%i" % (i+1), weight_init=U.normc_initializer(1.0))) self.vpred = dense(last_out, 1, "vffinal", weight_init=U.normc_initializer(1.0))[:, 0] last_out = obz for i in range(num_hid_layers): last_out = tf.nn.tanh(dense(last_out, hid_size, "polfc%i" % (i+1), weight_init=U.normc_initializer(1.0))) if gaussian_fixed_var and isinstance(ac_space, gym.spaces.Box): mean = dense(last_out, pdtype.param_shape()[0]//2, "polfinal", U.normc_initializer(0.01)) logstd = tf.get_variable(name="logstd", shape=[1, pdtype.param_shape()[0]//2], initializer=tf.zeros_initializer()) pdparam = tf.concat([mean, mean * 0.0 + logstd], axis=1) else: pdparam = dense(last_out, pdtype.param_shape()[0], "polfinal", U.normc_initializer(0.01)) self.pd = pdtype.pdfromflat(pdparam) self.state_in = [] self.state_out = [] # change for BC stochastic = U.get_placeholder(name="stochastic", dtype=tf.bool, shape=()) ac = U.switch(stochastic, self.pd.sample(), self.pd.mode()) self.ac = ac self._act = U.function([stochastic, ob], [ac, self.vpred])
Example #10
Source File: mlp_policy.py From sonic_contest with MIT License | 5 votes |
def _init(self, ob_space, ac_space, hid_size, num_hid_layers, gaussian_fixed_var=True): assert isinstance(ob_space, gym.spaces.Box) self.pdtype = pdtype = make_pdtype(ac_space) sequence_length = None ob = U.get_placeholder(name="ob", dtype=tf.float32, shape=[sequence_length] + list(ob_space.shape)) with tf.variable_scope("obfilter"): self.ob_rms = RunningMeanStd(shape=ob_space.shape) with tf.variable_scope('vf'): obz = tf.clip_by_value((ob - self.ob_rms.mean) / self.ob_rms.std, -5.0, 5.0) last_out = obz for i in range(num_hid_layers): last_out = tf.nn.tanh(tf.layers.dense(last_out, hid_size, name="fc%i"%(i+1), kernel_initializer=U.normc_initializer(1.0))) self.vpred = tf.layers.dense(last_out, 1, name='final', kernel_initializer=U.normc_initializer(1.0))[:,0] with tf.variable_scope('pol'): last_out = obz for i in range(num_hid_layers): last_out = tf.nn.tanh(tf.layers.dense(last_out, hid_size, name='fc%i'%(i+1), kernel_initializer=U.normc_initializer(1.0))) if gaussian_fixed_var and isinstance(ac_space, gym.spaces.Box): mean = tf.layers.dense(last_out, pdtype.param_shape()[0]//2, name='final', kernel_initializer=U.normc_initializer(0.01)) logstd = tf.get_variable(name="logstd", shape=[1, pdtype.param_shape()[0]//2], initializer=tf.zeros_initializer()) pdparam = tf.concat([mean, mean * 0.0 + logstd], axis=1) else: pdparam = tf.layers.dense(last_out, pdtype.param_shape()[0], name='final', kernel_initializer=U.normc_initializer(0.01)) self.pd = pdtype.pdfromflat(pdparam) self.state_in = [] self.state_out = [] stochastic = tf.placeholder(dtype=tf.bool, shape=()) ac = U.switch(stochastic, self.pd.sample(), self.pd.mode()) self._act = U.function([stochastic, ob], [ac, self.vpred])
Example #11
Source File: adversary.py From self-imitation-learning with MIT License | 5 votes |
def build_graph(self, obs_ph, acs_ph, reuse=False): with tf.variable_scope(self.scope): if reuse: tf.get_variable_scope().reuse_variables() with tf.variable_scope("obfilter"): self.obs_rms = RunningMeanStd(shape=self.observation_shape) obs = (obs_ph - self.obs_rms.mean / self.obs_rms.std) _input = tf.concat([obs, acs_ph], axis=1) # concatenate the two input -> form a transition p_h1 = tf.contrib.layers.fully_connected(_input, self.hidden_size, activation_fn=tf.nn.tanh) p_h2 = tf.contrib.layers.fully_connected(p_h1, self.hidden_size, activation_fn=tf.nn.tanh) logits = tf.contrib.layers.fully_connected(p_h2, 1, activation_fn=tf.identity) return logits
Example #12
Source File: policies.py From ICML2019-TREX with MIT License | 5 votes |
def _normalize_clip_observation(x, clip_range=[-5.0, 5.0]): rms = RunningMeanStd(shape=x.shape[1:]) norm_x = tf.clip_by_value((x - rms.mean) / rms.std, min(clip_range), max(clip_range)) return norm_x, rms
Example #13
Source File: mlp_policy.py From self-imitation-learning with MIT License | 5 votes |
def _init(self, ob_space, ac_space, hid_size, num_hid_layers, gaussian_fixed_var=True): assert isinstance(ob_space, gym.spaces.Box) self.pdtype = pdtype = make_pdtype(ac_space) sequence_length = None ob = U.get_placeholder(name="ob", dtype=tf.float32, shape=[sequence_length] + list(ob_space.shape)) with tf.variable_scope("obfilter"): self.ob_rms = RunningMeanStd(shape=ob_space.shape) with tf.variable_scope('vf'): obz = tf.clip_by_value((ob - self.ob_rms.mean) / self.ob_rms.std, -5.0, 5.0) last_out = obz for i in range(num_hid_layers): last_out = tf.nn.tanh(tf.layers.dense(last_out, hid_size, name="fc%i"%(i+1), kernel_initializer=U.normc_initializer(1.0))) self.vpred = tf.layers.dense(last_out, 1, name='final', kernel_initializer=U.normc_initializer(1.0))[:,0] with tf.variable_scope('pol'): last_out = obz for i in range(num_hid_layers): last_out = tf.nn.tanh(tf.layers.dense(last_out, hid_size, name='fc%i'%(i+1), kernel_initializer=U.normc_initializer(1.0))) if gaussian_fixed_var and isinstance(ac_space, gym.spaces.Box): mean = tf.layers.dense(last_out, pdtype.param_shape()[0]//2, name='final', kernel_initializer=U.normc_initializer(0.01)) logstd = tf.get_variable(name="logstd", shape=[1, pdtype.param_shape()[0]//2], initializer=tf.zeros_initializer()) pdparam = tf.concat([mean, mean * 0.0 + logstd], axis=1) else: pdparam = tf.layers.dense(last_out, pdtype.param_shape()[0], name='final', kernel_initializer=U.normc_initializer(0.01)) self.pd = pdtype.pdfromflat(pdparam) self.state_in = [] self.state_out = [] stochastic = tf.placeholder(dtype=tf.bool, shape=()) ac = U.switch(stochastic, self.pd.sample(), self.pd.mode()) self._act = U.function([stochastic, ob], [ac, self.vpred])
Example #14
Source File: adversary.py From baselines with MIT License | 5 votes |
def build_graph(self, obs_ph, acs_ph, reuse=False): with tf.variable_scope(self.scope): if reuse: tf.get_variable_scope().reuse_variables() with tf.variable_scope("obfilter"): self.obs_rms = RunningMeanStd(shape=self.observation_shape) obs = (obs_ph - self.obs_rms.mean) / self.obs_rms.std _input = tf.concat([obs, acs_ph], axis=1) # concatenate the two input -> form a transition p_h1 = tf.contrib.layers.fully_connected(_input, self.hidden_size, activation_fn=tf.nn.tanh) p_h2 = tf.contrib.layers.fully_connected(p_h1, self.hidden_size, activation_fn=tf.nn.tanh) logits = tf.contrib.layers.fully_connected(p_h2, 1, activation_fn=tf.identity) return logits
Example #15
Source File: mlp_policy.py From baselines with MIT License | 5 votes |
def _init(self, ob_space, ac_space, hid_size, num_hid_layers, gaussian_fixed_var=True): assert isinstance(ob_space, gym.spaces.Box) self.pdtype = pdtype = make_pdtype(ac_space) sequence_length = None ob = U.get_placeholder(name="ob", dtype=tf.float32, shape=[sequence_length] + list(ob_space.shape)) with tf.variable_scope("obfilter"): self.ob_rms = RunningMeanStd(shape=ob_space.shape) obz = tf.clip_by_value((ob - self.ob_rms.mean) / self.ob_rms.std, -5.0, 5.0) last_out = obz for i in range(num_hid_layers): last_out = tf.nn.tanh(dense(last_out, hid_size, "vffc%i" % (i+1), weight_init=U.normc_initializer(1.0))) self.vpred = dense(last_out, 1, "vffinal", weight_init=U.normc_initializer(1.0))[:, 0] last_out = obz for i in range(num_hid_layers): last_out = tf.nn.tanh(dense(last_out, hid_size, "polfc%i" % (i+1), weight_init=U.normc_initializer(1.0))) if gaussian_fixed_var and isinstance(ac_space, gym.spaces.Box): mean = dense(last_out, pdtype.param_shape()[0]//2, "polfinal", U.normc_initializer(0.01)) logstd = tf.get_variable(name="logstd", shape=[1, pdtype.param_shape()[0]//2], initializer=tf.zeros_initializer()) pdparam = tf.concat([mean, mean * 0.0 + logstd], axis=1) else: pdparam = dense(last_out, pdtype.param_shape()[0], "polfinal", U.normc_initializer(0.01)) self.pd = pdtype.pdfromflat(pdparam) self.state_in = [] self.state_out = [] # change for BC stochastic = U.get_placeholder(name="stochastic", dtype=tf.bool, shape=()) ac = U.switch(stochastic, self.pd.sample(), self.pd.mode()) self.ac = ac self._act = U.function([stochastic, ob], [ac, self.vpred])
Example #16
Source File: mlp_policy.py From baselines with MIT License | 5 votes |
def _init(self, ob_space, ac_space, hid_size, num_hid_layers, gaussian_fixed_var=True): assert isinstance(ob_space, gym.spaces.Box) self.pdtype = pdtype = make_pdtype(ac_space) sequence_length = None ob = U.get_placeholder(name="ob", dtype=tf.float32, shape=[sequence_length] + list(ob_space.shape)) with tf.variable_scope("obfilter"): self.ob_rms = RunningMeanStd(shape=ob_space.shape) with tf.variable_scope('vf'): obz = tf.clip_by_value((ob - self.ob_rms.mean) / self.ob_rms.std, -5.0, 5.0) last_out = obz for i in range(num_hid_layers): last_out = tf.nn.tanh(tf.layers.dense(last_out, hid_size, name="fc%i"%(i+1), kernel_initializer=U.normc_initializer(1.0))) self.vpred = tf.layers.dense(last_out, 1, name='final', kernel_initializer=U.normc_initializer(1.0))[:,0] with tf.variable_scope('pol'): last_out = obz for i in range(num_hid_layers): last_out = tf.nn.tanh(tf.layers.dense(last_out, hid_size, name='fc%i'%(i+1), kernel_initializer=U.normc_initializer(1.0))) if gaussian_fixed_var and isinstance(ac_space, gym.spaces.Box): mean = tf.layers.dense(last_out, pdtype.param_shape()[0]//2, name='final', kernel_initializer=U.normc_initializer(0.01)) logstd = tf.get_variable(name="logstd", shape=[1, pdtype.param_shape()[0]//2], initializer=tf.zeros_initializer()) pdparam = tf.concat([mean, mean * 0.0 + logstd], axis=1) else: pdparam = tf.layers.dense(last_out, pdtype.param_shape()[0], name='final', kernel_initializer=U.normc_initializer(0.01)) self.pd = pdtype.pdfromflat(pdparam) self.state_in = [] self.state_out = [] stochastic = tf.placeholder(dtype=tf.bool, shape=()) ac = U.switch(stochastic, self.pd.sample(), self.pd.mode()) self._act = U.function([stochastic, ob], [ac, self.vpred])
Example #17
Source File: policies.py From baselines with MIT License | 5 votes |
def _normalize_clip_observation(x, clip_range=[-5.0, 5.0]): rms = RunningMeanStd(shape=x.shape[1:]) norm_x = tf.clip_by_value((x - rms.mean) / rms.std, min(clip_range), max(clip_range)) return norm_x, rms
Example #18
Source File: models.py From baselines with MIT License | 5 votes |
def _normalize_clip_observation(x, clip_range=[-5.0, 5.0]): rms = RunningMeanStd(shape=x.shape[1:]) norm_x = tf.clip_by_value((x - rms.mean) / rms.std, min(clip_range), max(clip_range)) return norm_x, rms
Example #19
Source File: mlp_policy.py From midlevel-reps with MIT License | 5 votes |
def _init(self, ob_space, ac_space, hid_size, num_hid_layers, gaussian_fixed_var=True): assert isinstance(ob_space, gym.spaces.Box) self.pdtype = pdtype = make_pdtype(ac_space) sequence_length = None ob = U.get_placeholder(name="ob", dtype=tf.float32, shape=[sequence_length] + list(ob_space.shape)) with tf.variable_scope("obfilter"): self.ob_rms = RunningMeanStd(shape=ob_space.shape) obz = tf.clip_by_value((ob - self.ob_rms.mean) / self.ob_rms.std, -5.0, 5.0) last_out = obz for i in range(num_hid_layers): last_out = tf.nn.tanh(tf.layers.dense(last_out, hid_size, name="vffc%i"%(i+1), kernel_initializer=U.normc_initializer(1.0))) self.vpred = tf.layers.dense(last_out, 1, name="vffinal", kernel_initializer=U.normc_initializer(1.0))[:,0] last_out = obz for i in range(num_hid_layers): last_out = tf.nn.tanh(tf.layers.dense(last_out, hid_size, name="polfc%i"%(i+1), kernel_initializer=U.normc_initializer(1.0))) if gaussian_fixed_var and isinstance(ac_space, gym.spaces.Box): mean = tf.layers.dense(last_out, pdtype.param_shape()[0]//2, name="polfinal", kernel_initializer=U.normc_initializer(0.01)) logstd = tf.get_variable(name="logstd", shape=[1, pdtype.param_shape()[0]//2], initializer=tf.zeros_initializer()) pdparam = tf.concat([mean, mean * 0.0 + logstd], axis=1) else: pdparam = tf.layers.dense(last_out, pdtype.param_shape()[0], name="polfinal", kernel_initializer=U.normc_initializer(0.01)) self.pd = pdtype.pdfromflat(pdparam) self.state_in = [] self.state_out = [] stochastic = tf.placeholder(dtype=tf.bool, shape=()) ac = U.switch(stochastic, self.pd.sample(), self.pd.mode()) self._act = U.function([stochastic, ob], [ac, self.vpred])
Example #20
Source File: mlp_policy.py From deeprl-baselines with MIT License | 5 votes |
def _init(self, ob_space, ac_space, hid_size, num_hid_layers, gaussian_fixed_var=True): assert isinstance(ob_space, gym.spaces.Box) self.pdtype = pdtype = make_pdtype(ac_space) sequence_length = None ob = U.get_placeholder(name="ob", dtype=tf.float32, shape=[sequence_length] + list(ob_space.shape)) with tf.variable_scope("obfilter"): self.ob_rms = RunningMeanStd(shape=ob_space.shape) obz = tf.clip_by_value((ob - self.ob_rms.mean) / self.ob_rms.std, -5.0, 5.0) last_out = obz for i in range(num_hid_layers): last_out = tf.nn.tanh(U.dense(last_out, hid_size, "vffc%i"%(i+1), weight_init=U.normc_initializer(1.0))) self.vpred = U.dense(last_out, 1, "vffinal", weight_init=U.normc_initializer(1.0))[:,0] last_out = obz for i in range(num_hid_layers): last_out = tf.nn.tanh(U.dense(last_out, hid_size, "polfc%i"%(i+1), weight_init=U.normc_initializer(1.0))) if gaussian_fixed_var and isinstance(ac_space, gym.spaces.Box): mean = U.dense(last_out, pdtype.param_shape()[0]//2, "polfinal", U.normc_initializer(0.01)) logstd = tf.get_variable(name="logstd", shape=[1, pdtype.param_shape()[0]//2], initializer=tf.zeros_initializer()) pdparam = U.concatenate([mean, mean * 0.0 + logstd], axis=1) else: pdparam = U.dense(last_out, pdtype.param_shape()[0], "polfinal", U.normc_initializer(0.01)) self.pd = pdtype.pdfromflat(pdparam) self.state_in = [] self.state_out = [] stochastic = tf.placeholder(dtype=tf.bool, shape=()) ac = U.switch(stochastic, self.pd.sample(), self.pd.mode()) self._act = U.function([stochastic, ob], [ac, self.vpred])
Example #21
Source File: mlp_policy.py From BackpropThroughTheVoidRL with MIT License | 5 votes |
def _init(self, ob_space, ac_space, hid_size, num_hid_layers, gaussian_fixed_var=True): assert isinstance(ob_space, gym.spaces.Box) self.pdtype = pdtype = make_pdtype(ac_space) sequence_length = None ob = U.get_placeholder(name="ob", dtype=tf.float32, shape=[sequence_length] + list(ob_space.shape)) with tf.variable_scope("obfilter"): self.ob_rms = RunningMeanStd(shape=ob_space.shape) obz = tf.clip_by_value((ob - self.ob_rms.mean) / self.ob_rms.std, -5.0, 5.0) last_out = obz for i in range(num_hid_layers): last_out = tf.nn.tanh(U.dense(last_out, hid_size, "vffc%i"%(i+1), weight_init=U.normc_initializer(1.0))) self.vpred = U.dense(last_out, 1, "vffinal", weight_init=U.normc_initializer(1.0))[:,0] last_out = obz for i in range(num_hid_layers): last_out = tf.nn.tanh(U.dense(last_out, hid_size, "polfc%i"%(i+1), weight_init=U.normc_initializer(1.0))) if gaussian_fixed_var and isinstance(ac_space, gym.spaces.Box): mean = U.dense(last_out, pdtype.param_shape()[0]//2, "polfinal", U.normc_initializer(0.01)) logstd = tf.get_variable(name="logstd", shape=[1, pdtype.param_shape()[0]//2], initializer=tf.zeros_initializer()) pdparam = U.concatenate([mean, mean * 0.0 + logstd], axis=1) else: pdparam = U.dense(last_out, pdtype.param_shape()[0], "polfinal", U.normc_initializer(0.01)) self.pd = pdtype.pdfromflat(pdparam) self.state_in = [] self.state_out = [] stochastic = tf.placeholder(dtype=tf.bool, shape=()) ac = U.switch(stochastic, self.pd.sample(), self.pd.mode()) self._act = U.function([stochastic, ob], [ac, self.vpred])
Example #22
Source File: policies.py From Reinforcement_Learning_for_Traffic_Light_Control with Apache License 2.0 | 5 votes |
def _normalize_clip_observation(x, clip_range=[-5.0, 5.0]): rms = RunningMeanStd(shape=x.shape[1:]) norm_x = tf.clip_by_value((x - rms.mean) / rms.std, min(clip_range), max(clip_range)) return norm_x, rms
Example #23
Source File: mlp_policy.py From lirpg with MIT License | 5 votes |
def _init(self, ob_space, ac_space, hid_size, num_hid_layers, gaussian_fixed_var=True): assert isinstance(ob_space, gym.spaces.Box) self.pdtype = pdtype = make_pdtype(ac_space) sequence_length = None ob = U.get_placeholder(name="ob", dtype=tf.float32, shape=[sequence_length] + list(ob_space.shape)) with tf.variable_scope("obfilter"): self.ob_rms = RunningMeanStd(shape=ob_space.shape) obz = tf.clip_by_value((ob - self.ob_rms.mean) / self.ob_rms.std, -5.0, 5.0) last_out = obz for i in range(num_hid_layers): last_out = tf.nn.tanh(dense(last_out, hid_size, "vffc%i" % (i+1), weight_init=U.normc_initializer(1.0))) self.vpred = dense(last_out, 1, "vffinal", weight_init=U.normc_initializer(1.0))[:, 0] last_out = obz for i in range(num_hid_layers): last_out = tf.nn.tanh(dense(last_out, hid_size, "polfc%i" % (i+1), weight_init=U.normc_initializer(1.0))) if gaussian_fixed_var and isinstance(ac_space, gym.spaces.Box): mean = dense(last_out, pdtype.param_shape()[0]//2, "polfinal", U.normc_initializer(0.01)) logstd = tf.get_variable(name="logstd", shape=[1, pdtype.param_shape()[0]//2], initializer=tf.zeros_initializer()) pdparam = tf.concat([mean, mean * 0.0 + logstd], axis=1) else: pdparam = dense(last_out, pdtype.param_shape()[0], "polfinal", U.normc_initializer(0.01)) self.pd = pdtype.pdfromflat(pdparam) self.state_in = [] self.state_out = [] # change for BC stochastic = U.get_placeholder(name="stochastic", dtype=tf.bool, shape=()) ac = U.switch(stochastic, self.pd.sample(), self.pd.mode()) self.ac = ac self._act = U.function([stochastic, ob], [ac, self.vpred])
Example #24
Source File: mlp_policy.py From lirpg with MIT License | 5 votes |
def _init(self, ob_space, ac_space, hid_size, num_hid_layers, gaussian_fixed_var=True): assert isinstance(ob_space, gym.spaces.Box) self.pdtype = pdtype = make_pdtype(ac_space) sequence_length = None ob = U.get_placeholder(name="ob", dtype=tf.float32, shape=[sequence_length] + list(ob_space.shape)) with tf.variable_scope("obfilter"): self.ob_rms = RunningMeanStd(shape=ob_space.shape) with tf.variable_scope('vf'): obz = tf.clip_by_value((ob - self.ob_rms.mean) / self.ob_rms.std, -5.0, 5.0) last_out = obz for i in range(num_hid_layers): last_out = tf.nn.tanh(tf.layers.dense(last_out, hid_size, name="fc%i"%(i+1), kernel_initializer=U.normc_initializer(1.0))) self.vpred = tf.layers.dense(last_out, 1, name='final', kernel_initializer=U.normc_initializer(1.0))[:,0] with tf.variable_scope('pol'): last_out = obz for i in range(num_hid_layers): last_out = tf.nn.tanh(tf.layers.dense(last_out, hid_size, name='fc%i'%(i+1), kernel_initializer=U.normc_initializer(1.0))) if gaussian_fixed_var and isinstance(ac_space, gym.spaces.Box): mean = tf.layers.dense(last_out, pdtype.param_shape()[0]//2, name='final', kernel_initializer=U.normc_initializer(0.01)) logstd = tf.get_variable(name="logstd", shape=[1, pdtype.param_shape()[0]//2], initializer=tf.zeros_initializer()) pdparam = tf.concat([mean, mean * 0.0 + logstd], axis=1) else: pdparam = tf.layers.dense(last_out, pdtype.param_shape()[0], name='final', kernel_initializer=U.normc_initializer(0.01)) self.pd = pdtype.pdfromflat(pdparam) self.state_in = [] self.state_out = [] stochastic = tf.placeholder(dtype=tf.bool, shape=()) ac = U.switch(stochastic, self.pd.sample(), self.pd.mode()) self._act = U.function([stochastic, ob], [ac, self.vpred])
Example #25
Source File: adversary.py From HardRLWithYoutube with MIT License | 5 votes |
def build_graph(self, obs_ph, acs_ph, reuse=False): with tf.variable_scope(self.scope): if reuse: tf.get_variable_scope().reuse_variables() with tf.variable_scope("obfilter"): self.obs_rms = RunningMeanStd(shape=self.observation_shape) obs = (obs_ph - self.obs_rms.mean / self.obs_rms.std) _input = tf.concat([obs, acs_ph], axis=1) # concatenate the two input -> form a transition p_h1 = tf.contrib.layers.fully_connected(_input, self.hidden_size, activation_fn=tf.nn.tanh) p_h2 = tf.contrib.layers.fully_connected(p_h1, self.hidden_size, activation_fn=tf.nn.tanh) logits = tf.contrib.layers.fully_connected(p_h2, 1, activation_fn=tf.identity) return logits
Example #26
Source File: mlp_policy.py From HardRLWithYoutube with MIT License | 5 votes |
def _init(self, ob_space, ac_space, hid_size, num_hid_layers, gaussian_fixed_var=True): assert isinstance(ob_space, gym.spaces.Box) self.pdtype = pdtype = make_pdtype(ac_space) sequence_length = None ob = U.get_placeholder(name="ob", dtype=tf.float32, shape=[sequence_length] + list(ob_space.shape)) with tf.variable_scope("obfilter"): self.ob_rms = RunningMeanStd(shape=ob_space.shape) obz = tf.clip_by_value((ob - self.ob_rms.mean) / self.ob_rms.std, -5.0, 5.0) last_out = obz for i in range(num_hid_layers): last_out = tf.nn.tanh(dense(last_out, hid_size, "vffc%i" % (i+1), weight_init=U.normc_initializer(1.0))) self.vpred = dense(last_out, 1, "vffinal", weight_init=U.normc_initializer(1.0))[:, 0] last_out = obz for i in range(num_hid_layers): last_out = tf.nn.tanh(dense(last_out, hid_size, "polfc%i" % (i+1), weight_init=U.normc_initializer(1.0))) if gaussian_fixed_var and isinstance(ac_space, gym.spaces.Box): mean = dense(last_out, pdtype.param_shape()[0]//2, "polfinal", U.normc_initializer(0.01)) logstd = tf.get_variable(name="logstd", shape=[1, pdtype.param_shape()[0]//2], initializer=tf.zeros_initializer()) pdparam = tf.concat([mean, mean * 0.0 + logstd], axis=1) else: pdparam = dense(last_out, pdtype.param_shape()[0], "polfinal", U.normc_initializer(0.01)) self.pd = pdtype.pdfromflat(pdparam) self.state_in = [] self.state_out = [] # change for BC stochastic = U.get_placeholder(name="stochastic", dtype=tf.bool, shape=()) ac = U.switch(stochastic, self.pd.sample(), self.pd.mode()) self.ac = ac self._act = U.function([stochastic, ob], [ac, self.vpred])
Example #27
Source File: mlp_policy.py From HardRLWithYoutube with MIT License | 5 votes |
def _init(self, ob_space, ac_space, hid_size, num_hid_layers, gaussian_fixed_var=True): assert isinstance(ob_space, gym.spaces.Box) self.pdtype = pdtype = make_pdtype(ac_space) sequence_length = None ob = U.get_placeholder(name="ob", dtype=tf.float32, shape=[sequence_length] + list(ob_space.shape)) with tf.variable_scope("obfilter"): self.ob_rms = RunningMeanStd(shape=ob_space.shape) with tf.variable_scope('vf'): obz = tf.clip_by_value((ob - self.ob_rms.mean) / self.ob_rms.std, -5.0, 5.0) last_out = obz for i in range(num_hid_layers): last_out = tf.nn.tanh(tf.layers.dense(last_out, hid_size, name="fc%i"%(i+1), kernel_initializer=U.normc_initializer(1.0))) self.vpred = tf.layers.dense(last_out, 1, name='final', kernel_initializer=U.normc_initializer(1.0))[:,0] with tf.variable_scope('pol'): last_out = obz for i in range(num_hid_layers): last_out = tf.nn.tanh(tf.layers.dense(last_out, hid_size, name='fc%i'%(i+1), kernel_initializer=U.normc_initializer(1.0))) if gaussian_fixed_var and isinstance(ac_space, gym.spaces.Box): mean = tf.layers.dense(last_out, pdtype.param_shape()[0]//2, name='final', kernel_initializer=U.normc_initializer(0.01)) logstd = tf.get_variable(name="logstd", shape=[1, pdtype.param_shape()[0]//2], initializer=tf.zeros_initializer()) pdparam = tf.concat([mean, mean * 0.0 + logstd], axis=1) else: pdparam = tf.layers.dense(last_out, pdtype.param_shape()[0], name='final', kernel_initializer=U.normc_initializer(0.01)) self.pd = pdtype.pdfromflat(pdparam) self.state_in = [] self.state_out = [] stochastic = tf.placeholder(dtype=tf.bool, shape=()) ac = U.switch(stochastic, self.pd.sample(), self.pd.mode()) self._act = U.function([stochastic, ob], [ac, self.vpred])
Example #28
Source File: policies.py From HardRLWithYoutube with MIT License | 5 votes |
def _normalize_clip_observation(x, clip_range=[-5.0, 5.0]): rms = RunningMeanStd(shape=x.shape[1:]) norm_x = tf.clip_by_value((x - rms.mean) / rms.std, min(clip_range), max(clip_range)) return norm_x, rms
Example #29
Source File: models.py From HardRLWithYoutube with MIT License | 5 votes |
def _normalize_clip_observation(x, clip_range=[-5.0, 5.0]): rms = RunningMeanStd(shape=x.shape[1:]) norm_x = tf.clip_by_value((x - rms.mean) / rms.std, min(clip_range), max(clip_range)) return norm_x, rms
Example #30
Source File: policies.py From Reinforcement_Learning_for_Traffic_Light_Control with Apache License 2.0 | 5 votes |
def _normalize_clip_observation(x, clip_range=[-5.0, 5.0]): rms = RunningMeanStd(shape=x.shape[1:]) norm_x = tf.clip_by_value((x - rms.mean) / rms.std, min(clip_range), max(clip_range)) return norm_x, rms