Python mmcv.parallel.scatter() Examples

The following are 30 code examples of mmcv.parallel.scatter(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module mmcv.parallel , or try the search function .
Example #1
Source File: inference.py    From mmfashion with Apache License 2.0 7 votes vote down vote up
def inference_detector(model, img):
    """Inference image(s) with the detector.

    Args:
        model (nn.Module): The loaded detector.
        imgs (str/ndarray or list[str/ndarray]): Either image files or loaded
            images.

    Returns:
        If imgs is a str, a generator will be returned, otherwise return the
        detection results directly.
    """
    cfg = model.cfg
    device = next(model.parameters()).device  # model device
    # build the data pipeline
    test_pipeline = [LoadImage()] + cfg.data.test.pipeline[1:]
    test_pipeline = Compose(test_pipeline)
    # prepare data
    data = dict(img=img)
    data = test_pipeline(data)
    data = scatter(collate([data], samples_per_gpu=1), [device])[0]
    # forward the model
    with torch.no_grad():
        result = model(return_loss=False, rescale=True, **data)
    return result 
Example #2
Source File: eval_hooks.py    From hrnet with MIT License 5 votes vote down vote up
def after_train_epoch(self, runner):
        if not self.every_n_epochs(runner, self.interval):
            return
        runner.model.eval()
        results = [None for _ in range(len(self.dataset))]
        if runner.rank == 0:
            prog_bar = mmcv.ProgressBar(len(self.dataset))
        for idx in range(runner.rank, len(self.dataset), runner.world_size):
            data = self.dataset[idx]
            data_gpu = scatter(
                collate([data], samples_per_gpu=1),
                [torch.cuda.current_device()])[0]

            # compute output
            with torch.no_grad():
                result = runner.model(
                    return_loss=False, rescale=True, **data_gpu)
            results[idx] = result

            batch_size = runner.world_size
            if runner.rank == 0:
                for _ in range(batch_size):
                    prog_bar.update()

        if runner.rank == 0:
            print('\n')
            dist.barrier()
            for i in range(1, runner.world_size):
                tmp_file = osp.join(runner.work_dir, 'temp_{}.pkl'.format(i))
                tmp_results = mmcv.load(tmp_file)
                for idx in range(i, len(results), runner.world_size):
                    results[idx] = tmp_results[idx]
                os.remove(tmp_file)
            self.evaluate(runner, results)
        else:
            tmp_file = osp.join(runner.work_dir,
                                'temp_{}.pkl'.format(runner.rank))
            mmcv.dump(results, tmp_file)
            dist.barrier()
        dist.barrier() 
Example #3
Source File: inference.py    From mmdetection with Apache License 2.0 5 votes vote down vote up
def inference_detector(model, img):
    """Inference image(s) with the detector.

    Args:
        model (nn.Module): The loaded detector.
        imgs (str/ndarray or list[str/ndarray]): Either image files or loaded
            images.

    Returns:
        If imgs is a str, a generator will be returned, otherwise return the
        detection results directly.
    """
    cfg = model.cfg
    device = next(model.parameters()).device  # model device
    # build the data pipeline
    test_pipeline = [LoadImage()] + cfg.data.test.pipeline[1:]
    test_pipeline = Compose(test_pipeline)
    # prepare data
    data = dict(img=img)
    data = test_pipeline(data)
    data = collate([data], samples_per_gpu=1)
    if next(model.parameters()).is_cuda:
        # scatter to specified GPU
        data = scatter(data, [device])[0]
    else:
        # Use torchvision ops for CPU mode instead
        for m in model.modules():
            if isinstance(m, (RoIPool, RoIAlign)):
                if not m.aligned:
                    # aligned=False is not implemented on CPU
                    # set use_torchvision on-the-fly
                    m.use_torchvision = True
        warnings.warn('We set use_torchvision=True in CPU mode.')
        # just get the actual data from DataContainer
        data['img_metas'] = data['img_metas'][0].data

    # forward the model
    with torch.no_grad():
        result = model(return_loss=False, rescale=True, **data)
    return result 
Example #4
Source File: test.py    From FNA with Apache License 2.0 5 votes vote down vote up
def _data_func(data, device_id):
    data = scatter(collate([data], samples_per_gpu=1), [device_id])[0]
    return dict(return_loss=False, rescale=True, **data) 
Example #5
Source File: inference.py    From Cascade-RPN with Apache License 2.0 5 votes vote down vote up
def inference_detector(model, img):
    """Inference image(s) with the detector.

    Args:
        model (nn.Module): The loaded detector.
        imgs (str/ndarray or list[str/ndarray]): Either image files or loaded
            images.

    Returns:
        If imgs is a str, a generator will be returned, otherwise return the
        detection results directly.
    """
    cfg = model.cfg
    device = next(model.parameters()).device  # model device
    # build the data pipeline
    test_pipeline = [LoadImage()] + cfg.data.test.pipeline[1:]
    test_pipeline = Compose(test_pipeline)
    # prepare data
    data = dict(img=img)
    data = test_pipeline(data)
    data = scatter(collate([data], samples_per_gpu=1), [device])[0]
    # forward the model
    with torch.no_grad():
        result = model(return_loss=False, rescale=True, **data)

    return result


# TODO: merge this method with the one in BaseDetector 
Example #6
Source File: eval_hooks.py    From Cascade-RPN with Apache License 2.0 5 votes vote down vote up
def after_train_epoch(self, runner):
        if not self.every_n_epochs(runner, self.interval):
            return
        runner.model.eval()
        results = [None for _ in range(len(self.dataset))]
        if runner.rank == 0:
            prog_bar = mmcv.ProgressBar(len(self.dataset))
        for idx in range(runner.rank, len(self.dataset), runner.world_size):
            data = self.dataset[idx]
            data_gpu = scatter(
                collate([data], samples_per_gpu=1),
                [torch.cuda.current_device()])[0]

            # compute output
            with torch.no_grad():
                result = runner.model(
                    return_loss=False, rescale=True, **data_gpu)
            results[idx] = result

            batch_size = runner.world_size
            if runner.rank == 0:
                for _ in range(batch_size):
                    prog_bar.update()

        if runner.rank == 0:
            print('\n')
            dist.barrier()
            for i in range(1, runner.world_size):
                tmp_file = osp.join(runner.work_dir, 'temp_{}.pkl'.format(i))
                tmp_results = mmcv.load(tmp_file)
                for idx in range(i, len(results), runner.world_size):
                    results[idx] = tmp_results[idx]
                os.remove(tmp_file)
            self.evaluate(runner, results)
        else:
            tmp_file = osp.join(runner.work_dir,
                                'temp_{}.pkl'.format(runner.rank))
            mmcv.dump(results, tmp_file)
            dist.barrier()
        dist.barrier() 
Example #7
Source File: inference.py    From Feature-Selective-Anchor-Free-Module-for-Single-Shot-Object-Detection with Apache License 2.0 5 votes vote down vote up
def inference_detector(model, img):
    """Inference image(s) with the detector.

    Args:
        model (nn.Module): The loaded detector.
        imgs (str/ndarray or list[str/ndarray]): Either image files or loaded
            images.

    Returns:
        If imgs is a str, a generator will be returned, otherwise return the
        detection results directly.
    """
    cfg = model.cfg
    device = next(model.parameters()).device  # model device
    # build the data pipeline
    test_pipeline = [LoadImage()] + cfg.data.test.pipeline[1:]
    test_pipeline = Compose(test_pipeline)
    # prepare data
    data = dict(img=img)
    data = test_pipeline(data)
    data = scatter(collate([data], samples_per_gpu=1), [device])[0]
    # forward the model
    with torch.no_grad():
        result = model(return_loss=False, rescale=True, **data)

    return result


# TODO: merge this method with the one in BaseDetector 
Example #8
Source File: eval_hooks.py    From Feature-Selective-Anchor-Free-Module-for-Single-Shot-Object-Detection with Apache License 2.0 5 votes vote down vote up
def after_train_epoch(self, runner):
        if not self.every_n_epochs(runner, self.interval):
            return
        runner.model.eval()
        results = [None for _ in range(len(self.dataset))]
        if runner.rank == 0:
            prog_bar = mmcv.ProgressBar(len(self.dataset))
        for idx in range(runner.rank, len(self.dataset), runner.world_size):
            data = self.dataset[idx]
            data_gpu = scatter(
                collate([data], samples_per_gpu=1),
                [torch.cuda.current_device()])[0]

            # compute output
            with torch.no_grad():
                result = runner.model(
                    return_loss=False, rescale=True, **data_gpu)
            results[idx] = result

            batch_size = runner.world_size
            if runner.rank == 0:
                for _ in range(batch_size):
                    prog_bar.update()

        if runner.rank == 0:
            print('\n')
            dist.barrier()
            for i in range(1, runner.world_size):
                tmp_file = osp.join(runner.work_dir, 'temp_{}.pkl'.format(i))
                tmp_results = mmcv.load(tmp_file)
                for idx in range(i, len(results), runner.world_size):
                    results[idx] = tmp_results[idx]
                os.remove(tmp_file)
            self.evaluate(runner, results)
        else:
            tmp_file = osp.join(runner.work_dir,
                                'temp_{}.pkl'.format(runner.rank))
            mmcv.dump(results, tmp_file)
            dist.barrier()
        dist.barrier() 
Example #9
Source File: eval_hooks.py    From kaggle-imaterialist with MIT License 5 votes vote down vote up
def after_train_epoch(self, runner):
        if not self.every_n_epochs(runner, self.interval):
            return
        runner.model.eval()
        results = [None for _ in range(len(self.dataset))]
        if runner.rank == 0:
            prog_bar = mmcv.ProgressBar(len(self.dataset))
        for idx in range(runner.rank, len(self.dataset), runner.world_size):
            data = self.dataset[idx]
            data_gpu = scatter(
                collate([data], samples_per_gpu=1),
                [torch.cuda.current_device()])[0]

            # compute output
            with torch.no_grad():
                result = runner.model(
                    return_loss=False, rescale=True, **data_gpu)
            results[idx] = result

            batch_size = runner.world_size
            if runner.rank == 0:
                for _ in range(batch_size):
                    prog_bar.update()

        if runner.rank == 0:
            print('\n')
            dist.barrier()
            for i in range(1, runner.world_size):
                tmp_file = osp.join(runner.work_dir, 'temp_{}.pkl'.format(i))
                tmp_results = mmcv.load(tmp_file)
                for idx in range(i, len(results), runner.world_size):
                    results[idx] = tmp_results[idx]
                os.remove(tmp_file)
            self.evaluate(runner, results)
        else:
            tmp_file = osp.join(runner.work_dir,
                                'temp_{}.pkl'.format(runner.rank))
            mmcv.dump(results, tmp_file)
            dist.barrier()
        dist.barrier() 
Example #10
Source File: eval_hooks.py    From mmaction with Apache License 2.0 5 votes vote down vote up
def after_train_epoch(self, runner):
        if not self.every_n_epochs(runner, self.interval):
            return
        runner.model.eval()
        results = [None for _ in range(len(self.dataset))]
        if runner.rank == 0:
            prog_bar = mmcv.ProgressBar(len(self.dataset))
        for idx in range(runner.rank, len(self.dataset), runner.world_size):
            data = self.dataset[idx]
            data_gpu = scatter(
                collate([data], samples_per_gpu=1),
                [torch.cuda.current_device()])[0]

            # compute output
            with torch.no_grad():
                result = runner.model(
                    return_loss=False, rescale=True, **data_gpu)
            results[idx] = result

            batch_size = runner.world_size
            if runner.rank == 0:
                for _ in range(batch_size):
                    prog_bar.update()

        if runner.rank == 0:
            print('\n')
            dist.barrier()
            for i in range(1, runner.world_size):
                tmp_file = osp.join(runner.work_dir, 'temp_{}.pkl'.format(i))
                tmp_results = mmcv.load(tmp_file)
                for idx in range(i, len(results), runner.world_size):
                    results[idx] = tmp_results[idx]
                os.remove(tmp_file)
            self.evaluate(runner, results)
        else:
            tmp_file = osp.join(runner.work_dir,
                                'temp_{}.pkl'.format(runner.rank))
            mmcv.dump(results, tmp_file)
            dist.barrier()
        dist.barrier() 
Example #11
Source File: test_detector.py    From mmaction with Apache License 2.0 5 votes vote down vote up
def _data_func(data, device_id):
    data = scatter(collate([data], samples_per_gpu=1), [device_id])[0]
    return dict(return_loss=False, rescale=True, **data) 
Example #12
Source File: eval_hooks.py    From FoveaBox with Apache License 2.0 5 votes vote down vote up
def after_train_epoch(self, runner):
        if not self.every_n_epochs(runner, self.interval):
            return
        runner.model.eval()
        results = [None for _ in range(len(self.dataset))]
        if runner.rank == 0:
            prog_bar = mmcv.ProgressBar(len(self.dataset))
        for idx in range(runner.rank, len(self.dataset), runner.world_size):
            data = self.dataset[idx]
            data_gpu = scatter(
                collate([data], samples_per_gpu=1),
                [torch.cuda.current_device()])[0]

            # compute output
            with torch.no_grad():
                result = runner.model(
                    return_loss=False, rescale=True, **data_gpu)
            results[idx] = result

            batch_size = runner.world_size
            if runner.rank == 0:
                for _ in range(batch_size):
                    prog_bar.update()

        if runner.rank == 0:
            print('\n')
            dist.barrier()
            for i in range(1, runner.world_size):
                tmp_file = osp.join(runner.work_dir, 'temp_{}.pkl'.format(i))
                tmp_results = mmcv.load(tmp_file)
                for idx in range(i, len(results), runner.world_size):
                    results[idx] = tmp_results[idx]
                os.remove(tmp_file)
            self.evaluate(runner, results)
        else:
            tmp_file = osp.join(runner.work_dir,
                                'temp_{}.pkl'.format(runner.rank))
            mmcv.dump(results, tmp_file)
            dist.barrier()
        dist.barrier() 
Example #13
Source File: test.py    From hrnet with MIT License 5 votes vote down vote up
def _data_func(data, device_id):
    data = scatter(collate([data], samples_per_gpu=1), [device_id])[0]
    return dict(return_loss=False, rescale=True, **data) 
Example #14
Source File: eval_hooks.py    From CenterNet with Apache License 2.0 5 votes vote down vote up
def after_train_epoch(self, runner):
        if not self.every_n_epochs(runner, self.interval):
            return
        runner.model.eval()
        results = [None for _ in range(len(self.dataset))]
        if runner.rank == 0:
            prog_bar = mmcv.ProgressBar(len(self.dataset))
        for idx in range(runner.rank, len(self.dataset), runner.world_size):
            data = self.dataset[idx]
            data_gpu = scatter(
                collate([data], samples_per_gpu=1),
                [torch.cuda.current_device()])[0]

            # compute output
            with torch.no_grad():
                result = runner.model(
                    return_loss=False, rescale=True, **data_gpu)
            results[idx] = result

            batch_size = runner.world_size
            if runner.rank == 0:
                for _ in range(batch_size):
                    prog_bar.update()

        if runner.rank == 0:
            print('\n')
            dist.barrier()
            for i in range(1, runner.world_size):
                tmp_file = osp.join(runner.work_dir, 'temp_{}.pkl'.format(i))
                tmp_results = mmcv.load(tmp_file)
                for idx in range(i, len(results), runner.world_size):
                    results[idx] = tmp_results[idx]
                os.remove(tmp_file)
            self.evaluate(runner, results)
        else:
            tmp_file = osp.join(runner.work_dir,
                                'temp_{}.pkl'.format(runner.rank))
            mmcv.dump(results, tmp_file)
            dist.barrier()
        dist.barrier() 
Example #15
Source File: inference.py    From ttfnet with Apache License 2.0 5 votes vote down vote up
def inference_detector(model, img):
    """Inference image(s) with the detector.

    Args:
        model (nn.Module): The loaded detector.
        imgs (str/ndarray or list[str/ndarray]): Either image files or loaded
            images.

    Returns:
        If imgs is a str, a generator will be returned, otherwise return the
        detection results directly.
    """
    cfg = model.cfg
    device = next(model.parameters()).device  # model device
    # build the data pipeline
    test_pipeline = [LoadImage()] + cfg.data.test.pipeline[1:]
    test_pipeline = Compose(test_pipeline)
    # prepare data
    data = dict(img=img)
    data = test_pipeline(data)
    data = scatter(collate([data], samples_per_gpu=1), [device])[0]
    # forward the model
    with torch.no_grad():
        result = model(return_loss=False, rescale=True, **data)

    return result


# TODO: merge this method with the one in BaseDetector 
Example #16
Source File: eval_hooks.py    From ttfnet with Apache License 2.0 5 votes vote down vote up
def after_train_epoch(self, runner):
        if not self.every_n_epochs(runner, self.interval):
            return
        runner.model.eval()
        results = [None for _ in range(len(self.dataset))]
        if runner.rank == 0:
            prog_bar = mmcv.ProgressBar(len(self.dataset))
        for idx in range(runner.rank, len(self.dataset), runner.world_size):
            data = self.dataset[idx]
            data_gpu = scatter(
                collate([data], samples_per_gpu=1),
                [torch.cuda.current_device()])[0]

            # compute output
            with torch.no_grad():
                result = runner.model(
                    return_loss=False, rescale=True, **data_gpu)
            results[idx] = result

            batch_size = runner.world_size
            if runner.rank == 0:
                for _ in range(batch_size):
                    prog_bar.update()

        if runner.rank == 0:
            print('\n')
            dist.barrier()
            for i in range(1, runner.world_size):
                tmp_file = osp.join(runner.work_dir, 'temp_{}.pkl'.format(i))
                tmp_results = mmcv.load(tmp_file)
                for idx in range(i, len(results), runner.world_size):
                    results[idx] = tmp_results[idx]
                os.remove(tmp_file)
            self.evaluate(runner, results)
        else:
            tmp_file = osp.join(runner.work_dir,
                                'temp_{}.pkl'.format(runner.rank))
            mmcv.dump(results, tmp_file)
            dist.barrier()
        dist.barrier() 
Example #17
Source File: eval_hooks.py    From AugFPN with Apache License 2.0 5 votes vote down vote up
def after_train_epoch(self, runner):
        if not self.every_n_epochs(runner, self.interval):
            return
        runner.model.eval()
        results = [None for _ in range(len(self.dataset))]
        prog_bar = mmcv.ProgressBar(len(self.dataset))
        for idx in range(runner.rank, len(self.dataset), runner.world_size):
            data = self.dataset[idx]
            data_gpu = scatter(
                collate([data], samples_per_gpu=1),
                [torch.cuda.current_device()])[0]

            # compute output
            with torch.no_grad():
                result = runner.model(
                    return_loss=False, rescale=True, **data_gpu)
            results[idx] = result

            batch_size = runner.world_size
            for _ in range(batch_size):
                prog_bar.update()

        if runner.rank == 0:
            print('\n')
            self._barrier(runner.rank, runner.world_size)
            for i in range(1, runner.world_size):
                tmp_file = osp.join(runner.work_dir, 'temp_{}.pkl'.format(i))
                tmp_results = mmcv.load(tmp_file)
                for idx in range(i, len(results), runner.world_size):
                    results[idx] = tmp_results[idx]
                os.remove(tmp_file)
            self.evaluate(runner, results)
        else:
            tmp_file = osp.join(runner.work_dir,
                                'temp_{}.pkl'.format(runner.rank))
            mmcv.dump(results, tmp_file)
            self._barrier(runner.rank, runner.world_size)
        self._barrier(runner.rank, runner.world_size) 
Example #18
Source File: test.py    From AugFPN with Apache License 2.0 5 votes vote down vote up
def _data_func(data, device_id):
    data = scatter(collate([data], samples_per_gpu=1), [device_id])[0]
    return dict(return_loss=False, rescale=True, **data) 
Example #19
Source File: slurm_test.py    From AugFPN with Apache License 2.0 5 votes vote down vote up
def _data_func(data, device_id):
    data = scatter(collate([data], samples_per_gpu=1), [device_id])[0]
    return dict(return_loss=False, rescale=True, **data) 
Example #20
Source File: eval_hooks.py    From kaggle-kuzushiji-recognition with MIT License 5 votes vote down vote up
def after_train_epoch(self, runner):
        if not self.every_n_epochs(runner, self.interval):
            return
        runner.model.eval()
        results = [None for _ in range(len(self.dataset))]
        if runner.rank == 0:
            prog_bar = mmcv.ProgressBar(len(self.dataset))
        for idx in range(runner.rank, len(self.dataset), runner.world_size):
            data = self.dataset[idx]
            data_gpu = scatter(
                collate([data], samples_per_gpu=1),
                [torch.cuda.current_device()])[0]

            # compute output
            with torch.no_grad():
                result = runner.model(
                    return_loss=False, rescale=True, **data_gpu)
            results[idx] = result

            batch_size = runner.world_size
            if runner.rank == 0:
                for _ in range(batch_size):
                    prog_bar.update()

        if runner.rank == 0:
            print('\n')
            dist.barrier()
            for i in range(1, runner.world_size):
                tmp_file = osp.join(runner.work_dir, 'temp_{}.pkl'.format(i))
                tmp_results = mmcv.load(tmp_file)
                for idx in range(i, len(results), runner.world_size):
                    results[idx] = tmp_results[idx]
                os.remove(tmp_file)
            self.evaluate(runner, results)
        else:
            tmp_file = osp.join(runner.work_dir,
                                'temp_{}.pkl'.format(runner.rank))
            mmcv.dump(results, tmp_file)
            dist.barrier()
        dist.barrier() 
Example #21
Source File: inference.py    From mmdetection with Apache License 2.0 5 votes vote down vote up
def async_inference_detector(model, img):
    """Async inference image(s) with the detector.

    Args:
        model (nn.Module): The loaded detector.
        imgs (str/ndarray or list[str/ndarray]): Either image files or loaded
            images.

    Returns:
        Awaitable detection results.
    """
    cfg = model.cfg
    device = next(model.parameters()).device  # model device
    # build the data pipeline
    test_pipeline = [LoadImage()] + cfg.data.test.pipeline[1:]
    test_pipeline = Compose(test_pipeline)
    # prepare data
    data = dict(img=img)
    data = test_pipeline(data)
    data = scatter(collate([data], samples_per_gpu=1), [device])[0]

    # We don't restore `torch.is_grad_enabled()` value during concurrent
    # inference since execution can overlap
    torch.set_grad_enabled(False)
    result = await model.aforward_test(rescale=True, **data)
    return result 
Example #22
Source File: eval_hooks.py    From AerialDetection with Apache License 2.0 5 votes vote down vote up
def after_train_epoch(self, runner):
        if not self.every_n_epochs(runner, self.interval):
            return
        runner.model.eval()
        results = [None for _ in range(len(self.dataset))]
        if runner.rank == 0:
            prog_bar = mmcv.ProgressBar(len(self.dataset))
        for idx in range(runner.rank, len(self.dataset), runner.world_size):
            data = self.dataset[idx]
            data_gpu = scatter(
                collate([data], samples_per_gpu=1),
                [torch.cuda.current_device()])[0]

            # compute output
            with torch.no_grad():
                result = runner.model(
                    return_loss=False, rescale=True, **data_gpu)
            results[idx] = result

            batch_size = runner.world_size
            if runner.rank == 0:
                for _ in range(batch_size):
                    prog_bar.update()

        if runner.rank == 0:
            print('\n')
            dist.barrier()
            for i in range(1, runner.world_size):
                tmp_file = osp.join(runner.work_dir, 'temp_{}.pkl'.format(i))
                tmp_results = mmcv.load(tmp_file)
                for idx in range(i, len(results), runner.world_size):
                    results[idx] = tmp_results[idx]
                os.remove(tmp_file)
            self.evaluate(runner, results)
        else:
            tmp_file = osp.join(runner.work_dir,
                                'temp_{}.pkl'.format(runner.rank))
            mmcv.dump(results, tmp_file)
            dist.barrier()
        dist.barrier() 
Example #23
Source File: eval_hooks.py    From GCNet with Apache License 2.0 5 votes vote down vote up
def after_train_epoch(self, runner):
        if not self.every_n_epochs(runner, self.interval):
            return
        runner.model.eval()
        results = [None for _ in range(len(self.dataset))]
        if runner.rank == 0:
            prog_bar = mmcv.ProgressBar(len(self.dataset))
        for idx in range(runner.rank, len(self.dataset), runner.world_size):
            data = self.dataset[idx]
            data_gpu = scatter(
                collate([data], samples_per_gpu=1),
                [torch.cuda.current_device()])[0]

            # compute output
            with torch.no_grad():
                result = runner.model(
                    return_loss=False, rescale=True, **data_gpu)
            results[idx] = result

            batch_size = runner.world_size
            if runner.rank == 0:
                for _ in range(batch_size):
                    prog_bar.update()

        if runner.rank == 0:
            print('\n')
            dist.barrier()
            for i in range(1, runner.world_size):
                tmp_file = osp.join(runner.work_dir, 'temp_{}.pkl'.format(i))
                tmp_results = mmcv.load(tmp_file)
                for idx in range(i, len(results), runner.world_size):
                    results[idx] = tmp_results[idx]
                os.remove(tmp_file)
            self.evaluate(runner, results)
        else:
            tmp_file = osp.join(runner.work_dir,
                                'temp_{}.pkl'.format(runner.rank))
            mmcv.dump(results, tmp_file)
            dist.barrier()
        dist.barrier() 
Example #24
Source File: eval_hooks.py    From mmdetection-annotated with Apache License 2.0 5 votes vote down vote up
def after_train_epoch(self, runner):
        if not self.every_n_epochs(runner, self.interval):
            return
        runner.model.eval()
        results = [None for _ in range(len(self.dataset))]
        if runner.rank == 0:
            prog_bar = mmcv.ProgressBar(len(self.dataset))
        for idx in range(runner.rank, len(self.dataset), runner.world_size):
            data = self.dataset[idx]
            data_gpu = scatter(
                collate([data], samples_per_gpu=1),
                [torch.cuda.current_device()])[0]

            # compute output
            with torch.no_grad():
                result = runner.model(
                    return_loss=False, rescale=True, **data_gpu)
            results[idx] = result

            batch_size = runner.world_size
            if runner.rank == 0:
                for _ in range(batch_size):
                    prog_bar.update()

        if runner.rank == 0:
            print('\n')
            dist.barrier()
            for i in range(1, runner.world_size):
                tmp_file = osp.join(runner.work_dir, 'temp_{}.pkl'.format(i))
                tmp_results = mmcv.load(tmp_file)
                for idx in range(i, len(results), runner.world_size):
                    results[idx] = tmp_results[idx]
                os.remove(tmp_file)
            self.evaluate(runner, results)
        else:
            tmp_file = osp.join(runner.work_dir,
                                'temp_{}.pkl'.format(runner.rank))
            mmcv.dump(results, tmp_file)
            dist.barrier()
        dist.barrier() 
Example #25
Source File: inference.py    From mmfashion with Apache License 2.0 5 votes vote down vote up
def async_inference_detector(model, img):
    """Async inference image(s) with the detector.

    Args:
        model (nn.Module): The loaded detector.
        imgs (str/ndarray or list[str/ndarray]): Either image files or loaded
            images.

    Returns:
        Awaitable detection results.
    """
    cfg = model.cfg
    device = next(model.parameters()).device  # model device
    # build the data pipeline
    test_pipeline = [LoadImage()] + cfg.data.test.pipeline[1:]
    test_pipeline = Compose(test_pipeline)
    # prepare data
    data = dict(img=img)
    data = test_pipeline(data)
    data = scatter(collate([data], samples_per_gpu=1), [device])[0]

    # We don't restore `torch.is_grad_enabled()` value during concurrent
    # inference since execution can overlap
    torch.set_grad_enabled(False)
    result = await model.aforward_test(rescale=True, **data)
    return result


# TODO: merge this method with the one in BaseDetector 
Example #26
Source File: eval_hooks.py    From mmdetection_with_SENet154 with Apache License 2.0 5 votes vote down vote up
def after_train_epoch(self, runner):
        if not self.every_n_epochs(runner, self.interval):
            return
        runner.model.eval()
        results = [None for _ in range(len(self.dataset))]
        if runner.rank == 0:
            prog_bar = mmcv.ProgressBar(len(self.dataset))
        for idx in range(runner.rank, len(self.dataset), runner.world_size):
            data = self.dataset[idx]
            data_gpu = scatter(
                collate([data], samples_per_gpu=1),
                [torch.cuda.current_device()])[0]

            # compute output
            with torch.no_grad():
                result = runner.model(
                    return_loss=False, rescale=True, **data_gpu)
            results[idx] = result

            batch_size = runner.world_size
            if runner.rank == 0:
                for _ in range(batch_size):
                    prog_bar.update()

        if runner.rank == 0:
            print('\n')
            dist.barrier()
            for i in range(1, runner.world_size):
                tmp_file = osp.join(runner.work_dir, 'temp_{}.pkl'.format(i))
                tmp_results = mmcv.load(tmp_file)
                for idx in range(i, len(results), runner.world_size):
                    results[idx] = tmp_results[idx]
                os.remove(tmp_file)
            self.evaluate(runner, results)
        else:
            tmp_file = osp.join(runner.work_dir,
                                'temp_{}.pkl'.format(runner.rank))
            mmcv.dump(results, tmp_file)
            dist.barrier()
        dist.barrier() 
Example #27
Source File: eval_hooks.py    From PolarMask with Apache License 2.0 5 votes vote down vote up
def after_train_epoch(self, runner):
        if not self.every_n_epochs(runner, self.interval):
            return
        runner.model.eval()
        results = [None for _ in range(len(self.dataset))]
        if runner.rank == 0:
            prog_bar = mmcv.ProgressBar(len(self.dataset))
        for idx in range(runner.rank, len(self.dataset), runner.world_size):
            data = self.dataset[idx]
            data_gpu = scatter(
                collate([data], samples_per_gpu=1),
                [torch.cuda.current_device()])[0]

            # compute output
            with torch.no_grad():
                result = runner.model(
                    return_loss=False, rescale=True, **data_gpu)
            results[idx] = result

            batch_size = runner.world_size
            if runner.rank == 0:
                for _ in range(batch_size):
                    prog_bar.update()

        if runner.rank == 0:
            print('\n')
            dist.barrier()
            for i in range(1, runner.world_size):
                tmp_file = osp.join(runner.work_dir, 'temp_{}.pkl'.format(i))
                tmp_results = mmcv.load(tmp_file)
                for idx in range(i, len(results), runner.world_size):
                    results[idx] = tmp_results[idx]
                os.remove(tmp_file)
            self.evaluate(runner, results)
        else:
            tmp_file = osp.join(runner.work_dir,
                                'temp_{}.pkl'.format(runner.rank))
            mmcv.dump(results, tmp_file)
            dist.barrier()
        dist.barrier() 
Example #28
Source File: inference.py    From kaggle-kuzushiji-recognition with MIT License 5 votes vote down vote up
def inference_detector(model, img):
    """Inference image(s) with the detector.

    Args:
        model (nn.Module): The loaded detector.
        imgs (str/ndarray or list[str/ndarray]): Either image files or loaded
            images.

    Returns:
        If imgs is a str, a generator will be returned, otherwise return the
        detection results directly.
    """
    cfg = model.cfg
    device = next(model.parameters()).device  # model device
    # build the data pipeline
    test_pipeline = [LoadImage()] + cfg.data.test.pipeline[1:]
    test_pipeline = Compose(test_pipeline)
    # prepare data
    data = dict(img=img)
    data = test_pipeline(data)
    data = scatter(collate([data], samples_per_gpu=1), [device])[0]
    # forward the model
    with torch.no_grad():
        result = model(return_loss=False, rescale=True, **data)

    return result


# TODO: merge this method with the one in BaseDetector 
Example #29
Source File: eval_hooks.py    From Libra_R-CNN with Apache License 2.0 5 votes vote down vote up
def after_train_epoch(self, runner):
        if not self.every_n_epochs(runner, self.interval):
            return
        runner.model.eval()
        results = [None for _ in range(len(self.dataset))]
        if runner.rank == 0:
            prog_bar = mmcv.ProgressBar(len(self.dataset))
        for idx in range(runner.rank, len(self.dataset), runner.world_size):
            data = self.dataset[idx]
            data_gpu = scatter(
                collate([data], samples_per_gpu=1),
                [torch.cuda.current_device()])[0]

            # compute output
            with torch.no_grad():
                result = runner.model(
                    return_loss=False, rescale=True, **data_gpu)
            results[idx] = result

            batch_size = runner.world_size
            if runner.rank == 0:
                for _ in range(batch_size):
                    prog_bar.update()

        if runner.rank == 0:
            print('\n')
            dist.barrier()
            for i in range(1, runner.world_size):
                tmp_file = osp.join(runner.work_dir, 'temp_{}.pkl'.format(i))
                tmp_results = mmcv.load(tmp_file)
                for idx in range(i, len(results), runner.world_size):
                    results[idx] = tmp_results[idx]
                os.remove(tmp_file)
            self.evaluate(runner, results)
        else:
            tmp_file = osp.join(runner.work_dir,
                                'temp_{}.pkl'.format(runner.rank))
            mmcv.dump(results, tmp_file)
            dist.barrier()
        dist.barrier() 
Example #30
Source File: eval_hooks.py    From Grid-R-CNN with Apache License 2.0 5 votes vote down vote up
def after_train_epoch(self, runner):
        if not self.every_n_epochs(runner, self.interval):
            return
        runner.model.eval()
        results = [None for _ in range(len(self.dataset))]
        if runner.rank == 0:
            prog_bar = mmcv.ProgressBar(len(self.dataset))
        for idx in range(runner.rank, len(self.dataset), runner.world_size):
            data = self.dataset[idx]
            data_gpu = scatter(
                collate([data], samples_per_gpu=1),
                [torch.cuda.current_device()])[0]

            # compute output
            with torch.no_grad():
                result = runner.model(
                    return_loss=False, rescale=True, **data_gpu)
            results[idx] = result

            batch_size = runner.world_size
            if runner.rank == 0:
                for _ in range(batch_size):
                    prog_bar.update()

        if runner.rank == 0:
            print('\n')
            dist.barrier()
            for i in range(1, runner.world_size):
                tmp_file = osp.join(runner.work_dir, 'temp_{}.pkl'.format(i))
                tmp_results = mmcv.load(tmp_file)
                for idx in range(i, len(results), runner.world_size):
                    results[idx] = tmp_results[idx]
                os.remove(tmp_file)
            self.evaluate(runner, results)
        else:
            tmp_file = osp.join(runner.work_dir,
                                'temp_{}.pkl'.format(runner.rank))
            mmcv.dump(results, tmp_file)
            dist.barrier()
        dist.barrier()