Python dask.array.ones() Examples
The following are 30
code examples of dask.array.ones().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
dask.array
, or try the search function
.
Example #1
Source File: test_composites.py From satpy with GNU General Public License v3.0 | 6 votes |
def test_multiple_sensors(self): """Test the background compositing from multiple sensor data.""" from satpy.composites import BackgroundCompositor import numpy as np comp = BackgroundCompositor("name") # L mode images attrs = {'mode': 'L', 'area': 'foo'} foreground = xr.DataArray(np.array([[[1., 0.5], [0., np.nan]]]), dims=('bands', 'y', 'x'), coords={'bands': [c for c in attrs['mode']]}, attrs=attrs.copy()) foreground.attrs['sensor'] = 'abi' background = xr.DataArray(np.ones((1, 2, 2)), dims=('bands', 'y', 'x'), coords={'bands': [c for c in attrs['mode']]}, attrs=attrs.copy()) background.attrs['sensor'] = 'glm' res = comp([foreground, background]) self.assertEqual(res.attrs['area'], 'foo') self.assertTrue(np.all(res == np.array([[1., 0.5], [0., 1.]]))) self.assertEqual(res.attrs['mode'], 'L') self.assertEqual(res.attrs['sensor'], {'abi', 'glm'})
Example #2
Source File: test_pixelated_stem_class.py From pyxem with GNU General Public License v3.0 | 6 votes |
def test_simple(self): array0 = da.ones(shape=(10, 10, 40, 40), chunks=(5, 5, 5, 5)) s0 = LazyDiffraction2D(array0) s0_r = s0.radial_average() assert (s0_r.data[:, :, :-1] == 1).all() data_shape = 2, 2, 11, 11 array1 = np.zeros(data_shape) array1[:, :, 5, 5] = 1 dask_array = da.from_array(array1, chunks=(1, 1, 1, 1)) s1 = LazyDiffraction2D(dask_array) s1.axes_manager.signal_axes[0].offset = -5 s1.axes_manager.signal_axes[1].offset = -5 s1_r = s1.radial_average() assert np.all(s1_r.data[:, :, 0] == 1) assert np.all(s1_r.data[:, :, 1:] == 0)
Example #3
Source File: test_bilinear.py From pyresample with GNU Lesser General Public License v3.0 | 6 votes |
def test_add_missing_coordinates(self): """Test coordinate updating.""" import dask.array as da from xarray import DataArray from pyresample.bilinear.xarr import XArrayResamplerBilinear resampler = XArrayResamplerBilinear(self.source_def, self.target_def, self.radius) bands = ['R', 'G', 'B'] data = DataArray(da.ones((3, 10, 10)), dims=('bands', 'y', 'x'), coords={'bands': bands, 'y': np.arange(10), 'x': np.arange(10)}) resampler._add_missing_coordinates(data) # X and Y coordinates should not change self.assertIsNone(resampler.out_coords_x) self.assertIsNone(resampler.out_coords_y) self.assertIsNone(resampler.out_coords['x']) self.assertIsNone(resampler.out_coords['y']) self.assertTrue('bands' in resampler.out_coords) self.assertTrue(np.all(resampler.out_coords['bands'] == bands))
Example #4
Source File: __init__.py From satpy with GNU General Public License v3.0 | 6 votes |
def _mean4(data, offset=(0, 0), block_id=None): rows, cols = data.shape # we assume that the chunks except the first ones are aligned if block_id[0] == 0: row_offset = offset[0] % 2 else: row_offset = 0 if block_id[1] == 0: col_offset = offset[1] % 2 else: col_offset = 0 row_after = (row_offset + rows) % 2 col_after = (col_offset + cols) % 2 pad = ((row_offset, row_after), (col_offset, col_after)) rows2 = rows + row_offset + row_after cols2 = cols + col_offset + col_after av_data = np.pad(data, pad, 'edge') new_shape = (int(rows2 / 2.), 2, int(cols2 / 2.), 2) data_mean = np.nanmean(av_data.reshape(new_shape), axis=(1, 3)) data_mean = np.repeat(np.repeat(data_mean, 2, axis=0), 2, axis=1) data_mean = data_mean[row_offset:row_offset + rows, col_offset:col_offset + cols] return data_mean
Example #5
Source File: test_resample.py From satpy with GNU General Public License v3.0 | 6 votes |
def test_compute(self): """Test count bucket resampler computation.""" import dask.array as da # 1D data self.bucket.resampler = mock.MagicMock() data = da.ones((5,)) self.bucket.resampler.get_count.return_value = data res = self.bucket.compute(data) self.bucket.resampler.get_count.assert_called_once_with() self.assertEqual(res.shape, (1, 5)) # 2D data self.bucket.resampler = mock.MagicMock() data = da.ones((5, 5)) self.bucket.resampler.get_count.return_value = data res = self.bucket.compute(data) self.bucket.resampler.get_count.assert_called_once_with() self.assertEqual(res.shape, (1, 5, 5)) # 3D data self.bucket.resampler = mock.MagicMock() data = da.ones((3, 5, 5)) self.bucket.resampler.get_count.return_value = data[0, :, :] res = self.bucket.compute(data) self.assertEqual(res.shape, (3, 5, 5))
Example #6
Source File: test_resample.py From satpy with GNU General Public License v3.0 | 6 votes |
def test_compute(self): """Test fraction bucket resampler computation.""" import dask.array as da import numpy as np self.bucket.resampler = mock.MagicMock() data = da.ones((3, 3)) # No kwargs given _ = self.bucket.compute(data) self.bucket.resampler.get_fractions.assert_called_with( data, categories=None, fill_value=np.nan) # Custom kwargs _ = self.bucket.compute(data, categories=[1, 2], fill_value=0) self.bucket.resampler.get_fractions.assert_called_with( data, categories=[1, 2], fill_value=0) # Too many dimensions data = da.ones((3, 5, 5)) with self.assertRaises(ValueError): _ = self.bucket.compute(data)
Example #7
Source File: test_resample.py From satpy with GNU General Public License v3.0 | 6 votes |
def test_resample(self, pyresample_bucket): """Test fraction bucket resamplers resample method.""" import xarray as xr import dask.array as da import numpy as np self.bucket.resampler = mock.MagicMock() self.bucket.precompute = mock.MagicMock() self.bucket.compute = mock.MagicMock() # Fractions return a dict data = xr.DataArray(da.ones((1, 5, 5)), dims=('bands', 'y', 'x')) arr = da.ones((5, 5)) self.bucket.compute.return_value = {0: arr, 1: arr, 2: arr} res = self.bucket.resample(data) self.assertTrue('categories' in res.coords) self.assertTrue('categories' in res.dims) self.assertTrue(np.all(res.coords['categories'] == np.array([0, 1, 2])))
Example #8
Source File: test_catalog.py From nbodykit with GNU General Public License v3.0 | 6 votes |
def test_delitem(comm): source = UniformCatalog(nbar=2e-4, BoxSize=512., seed=42, comm=comm) # add a test column test = numpy.ones(source.size) source['test'] = test # cannot delete hard coded column with pytest.raises(ValueError): del source['Position'] # cannot delete missing column with pytest.raises(ValueError): del source['BAD_COLUMN'] assert 'test' in source del source['test'] assert 'test' not in source
Example #9
Source File: test_catalog.py From nbodykit with GNU General Public License v3.0 | 6 votes |
def test_transform(comm): cosmo = cosmology.Planck15 data = numpy.ones(100, dtype=[ ('Position', ('f4', 3)), ('Velocity', ('f4', 3))] ) source = ArrayCatalog(data, BoxSize=100, Nmesh=32, comm=comm) source['Velocity'] = source['Position'] + source['Velocity'] source['Position'] = source['Position'] + source['Velocity'] # Position triggers Velocity which triggers Position and Velocity # which resolves to the true data. # so total is 3. assert_allclose(source['Position'], 3) mesh = source.to_mesh()
Example #10
Source File: test_composites.py From satpy with GNU General Public License v3.0 | 6 votes |
def setUp(self): """Create test data.""" from satpy.composites import GenericCompositor self.comp = GenericCompositor(name='test') self.comp2 = GenericCompositor(name='test2', common_channel_mask=False) all_valid = np.ones((1, 2, 2)) self.all_valid = xr.DataArray(all_valid, dims=['bands', 'y', 'x']) first_invalid = np.reshape(np.array([np.nan, 1., 1., 1.]), (1, 2, 2)) self.first_invalid = xr.DataArray(first_invalid, dims=['bands', 'y', 'x']) second_invalid = np.reshape(np.array([1., np.nan, 1., 1.]), (1, 2, 2)) self.second_invalid = xr.DataArray(second_invalid, dims=['bands', 'y', 'x']) wrong_shape = np.reshape(np.array([1., 1., 1.]), (1, 3, 1)) self.wrong_shape = xr.DataArray(wrong_shape, dims=['bands', 'y', 'x'])
Example #11
Source File: __init__.py From satpy with GNU General Public License v3.0 | 5 votes |
def add_bands(data, bands): """Add bands so that they match *bands*.""" # Add R, G and B bands, remove L band if 'L' in data['bands'].data and 'R' in bands.data: lum = data.sel(bands='L') # Keep 'A' if it was present if 'A' in data['bands']: alpha = data.sel(bands='A') new_data = (lum, lum, lum, alpha) new_bands = ['R', 'G', 'B', 'A'] mode = 'RGBA' else: new_data = (lum, lum, lum) new_bands = ['R', 'G', 'B'] mode = 'RGB' data = xr.concat(new_data, dim='bands', coords={'bands': new_bands}) data['bands'] = new_bands data.attrs['mode'] = mode # Add alpha band if 'A' not in data['bands'].data and 'A' in bands.data: new_data = [data.sel(bands=band) for band in data['bands'].data] # Create alpha band based on a copy of the first "real" band alpha = new_data[0].copy() alpha.data = da.ones((data.sizes['y'], data.sizes['x']), chunks=new_data[0].chunks) # Rename band to indicate it's alpha alpha['bands'] = 'A' new_data.append(alpha) new_data = xr.concat(new_data, dim='bands') new_data.attrs['mode'] = data.attrs['mode'] + 'A' data = new_data return data
Example #12
Source File: test_composites.py From satpy with GNU General Public License v3.0 | 5 votes |
def setUp(self): """Create test data.""" from pyresample.geometry import AreaDefinition area = AreaDefinition('test', 'test', 'test', {'proj': 'merc'}, 2, 2, (-2000, -2000, 2000, 2000)) bigger_area = AreaDefinition('test', 'test', 'test', {'proj': 'merc'}, 4, 4, (-2000, -2000, 2000, 2000)) attrs = {'area': area, 'start_time': datetime(2018, 1, 1, 18), 'modifiers': tuple(), 'name': 'test_vis'} ds1 = xr.DataArray(da.ones((2, 2), chunks=2, dtype=np.float64), attrs=attrs, dims=('y', 'x'), coords={'y': [0, 1], 'x': [0, 1]}) self.ds1 = ds1 ds2 = xr.DataArray(da.ones((4, 4), chunks=2, dtype=np.float64), attrs=attrs, dims=('y', 'x'), coords={'y': [0, 0.5, 1, 1.5], 'x': [0, 0.5, 1, 1.5]}) ds2.attrs['area'] = bigger_area self.ds2 = ds2 self.sza = xr.DataArray( np.rad2deg(np.arccos(da.from_array([[0.0149581333, 0.0146694376], [0.0150812684, 0.0147925727]], chunks=2))), attrs={'area': area}, dims=('y', 'x'), coords={'y': [0, 1], 'x': [0, 1]}, )
Example #13
Source File: test_resample.py From satpy with GNU General Public License v3.0 | 5 votes |
def test_resample(self, pyresample_bucket): """Test bucket resamplers resample method.""" import xarray as xr import dask.array as da self.bucket.resampler = mock.MagicMock() self.bucket.precompute = mock.MagicMock() self.bucket.compute = mock.MagicMock() # 1D input data data = xr.DataArray(da.ones((5,)), dims=('foo'), attrs={'bar': 'baz'}) self.bucket.compute.return_value = da.ones((5, 5)) res = self.bucket.resample(data) self.bucket.precompute.assert_called_once() self.bucket.compute.assert_called_once() self.assertEqual(res.shape, (5, 5)) self.assertEqual(res.dims, ('y', 'x')) self.assertTrue('bar' in res.attrs) self.assertEqual(res.attrs['bar'], 'baz') # 2D input data data = xr.DataArray(da.ones((5, 5)), dims=('foo', 'bar')) self.bucket.compute.return_value = da.ones((5, 5)) res = self.bucket.resample(data) self.assertEqual(res.shape, (5, 5)) self.assertEqual(res.dims, ('y', 'x')) # 3D input data with 'bands' dim data = xr.DataArray(da.ones((1, 5, 5)), dims=('bands', 'foo', 'bar'), coords={'bands': ['L']}) self.bucket.compute.return_value = da.ones((1, 5, 5)) res = self.bucket.resample(data) self.assertEqual(res.shape, (1, 5, 5)) self.assertEqual(res.dims, ('bands', 'y', 'x')) self.assertEqual(res.coords['bands'], ['L']) # 3D input data with misc dim names data = xr.DataArray(da.ones((3, 5, 5)), dims=('foo', 'bar', 'baz')) self.bucket.compute.return_value = da.ones((3, 5, 5)) res = self.bucket.resample(data) self.assertEqual(res.shape, (3, 5, 5)) self.assertEqual(res.dims, ('foo', 'bar', 'baz'))
Example #14
Source File: test_resample.py From satpy with GNU General Public License v3.0 | 5 votes |
def test_compute(self): """Test bucket resampler computation.""" import dask.array as da # 1D data self.bucket.resampler = mock.MagicMock() data = da.ones((5,)) self.bucket.resampler.get_average.return_value = data res = self.bucket.compute(data, fill_value=2) self.bucket.resampler.get_average.assert_called_once_with( data, fill_value=2, mask_all_nan=False) self.assertEqual(res.shape, (1, 5)) # 2D data self.bucket.resampler = mock.MagicMock() data = da.ones((5, 5)) self.bucket.resampler.get_average.return_value = data res = self.bucket.compute(data, fill_value=2) self.bucket.resampler.get_average.assert_called_once_with( data, fill_value=2, mask_all_nan=False) self.assertEqual(res.shape, (1, 5, 5)) # 3D data self.bucket.resampler = mock.MagicMock() data = da.ones((3, 5, 5)) self.bucket.resampler.get_average.return_value = data[0, :, :] res = self.bucket.compute(data, fill_value=2) self.assertEqual(res.shape, (3, 5, 5))
Example #15
Source File: __init__.py From satpy with GNU General Public License v3.0 | 5 votes |
def __call__(self, projectables, *args, **kwargs): """Call the compositor.""" if len(projectables) != 2: raise ValueError("Expected 2 datasets, got %d" % (len(projectables),)) projectables = self.match_data_arrays(projectables) data_in = projectables[0] mask_in = projectables[1] mask_data = mask_in.data alpha_attrs = data_in.attrs.copy() if 'bands' in data_in.dims: data = [data_in.sel(bands=b) for b in data_in['bands'] if b != 'A'] else: data = [data_in] # Create alpha band alpha = da.ones((data[0].sizes['y'], data[0].sizes['x']), chunks=data[0].chunks) for condition in self.conditions: method = condition['method'] value = condition.get('value', None) if isinstance(value, str): value = _get_flag_value(mask_in, value) transparency = condition['transparency'] mask = self._get_mask(method, value, mask_data) if transparency == 100.0: data = self._set_data_nans(data, mask, alpha_attrs) alpha_val = 1. - transparency / 100. alpha = da.where(mask, alpha_val, alpha) alpha = xr.DataArray(data=alpha, attrs=alpha_attrs, dims=data[0].dims, coords=data[0].coords) data.append(alpha) res = super(MaskingCompositor, self).__call__(data, **kwargs) return res
Example #16
Source File: test_pixelated_stem_class.py From pyxem with GNU General Public License v3.0 | 5 votes |
def test_mask(self, mask): s = Diffraction2D(np.ones((10, 10, 10, 10))) s1 = s.threshold_and_mask(mask=mask) slice0 = np.s_[:, :, mask[1] - mask[2] : mask[1] + mask[2] + 1, mask[0]] assert (s1.data[slice0] == 1.0).all() slice1 = np.s_[:, :, mask[1], mask[0] - mask[2] : mask[0] + mask[2] + 1] assert (s1.data[slice1] == 1.0).all() s1.data[slice0] = 0 s1.data[slice1] = 0 assert (s1.data == 0).all()
Example #17
Source File: test_avhrr_l1b_gaclac.py From satpy with GNU General Public License v3.0 | 5 votes |
def test_get_dataset_angles(self, get_angle, *mocks): from satpy.dataset import DatasetID from satpy.readers.avhrr_l1b_gaclac import ANGLES ones = np.ones((3, 3)) get_angle.return_value = ones reader = self._get_reader_mocked() fh = self._get_fh_mocked( reader=reader, start_line=None, end_line=None, strip_invalid_coords=False, interpolate_coords=True ) # With interpolation of coordinates for angle in ANGLES: key = DatasetID(angle) info = {'name': angle, 'standard_name': 'my_standard_name'} res = fh.get_dataset(key=key, info=info) exp = xr.DataArray(ones, name=res.name, dims=('y', 'x'), coords={'acq_time': ('y', [0, 1, 2])}) xr.testing.assert_equal(res, exp) # Without interpolation of coordinates fh.interpolate_coords = False for angle in ANGLES: key = DatasetID(angle) info = {'name': angle, 'standard_name': 'my_standard_name'} res = fh.get_dataset(key=key, info=info) self.assertTupleEqual(res.dims, ('y', 'x_every_eighth'))
Example #18
Source File: test_gradient.py From pyresample with GNU Lesser General Public License v3.0 | 5 votes |
def test_resample_area_to_area_2d(self): """Resample area to area, 2d.""" data = xr.DataArray(da.ones(self.src_area.shape, dtype=np.float64), dims=['y', 'x']) res = self.resampler.compute( data, method='bil').compute(scheduler='single-threaded') assert res.shape == self.dst_area.shape assert np.allclose(res, 1)
Example #19
Source File: test_composites.py From satpy with GNU General Public License v3.0 | 5 votes |
def setUp(self): """Create test data.""" from satpy.composites import SingleBandCompositor self.comp = SingleBandCompositor(name='test') all_valid = np.ones((2, 2)) self.all_valid = xr.DataArray(all_valid, dims=['y', 'x'])
Example #20
Source File: test_pixelated_stem_class.py From pyxem with GNU General Public License v3.0 | 5 votes |
def test_big_value(self): data_shape = (5, 40, 40) big_value = 50000000 array0 = np.ones(shape=data_shape) * big_value dask_array = da.from_array(array0, chunks=(2, 10, 10)) s0 = LazyDiffraction2D(dask_array) s0_r = s0.radial_average() assert s0_r.axes_manager.navigation_shape == data_shape[:1] assert (s0_r.data[:, :-1] == big_value).all()
Example #21
Source File: test_pixelated_stem_class.py From pyxem with GNU General Public License v3.0 | 5 votes |
def test_nav_1(self): data_shape = (5, 40, 40) array0 = da.ones(shape=data_shape, chunks=(5, 5, 5)) s0 = LazyDiffraction2D(array0) s0_r = s0.radial_average() assert s0_r.axes_manager.navigation_shape == data_shape[:1] assert (s0_r.data[:, :-1] == 1).all()
Example #22
Source File: test_pixelated_stem_class.py From pyxem with GNU General Public License v3.0 | 5 votes |
def test_different_shape(self): array = da.ones(shape=(7, 9, 30, 40), chunks=(3, 3, 5, 5)) s = LazyDiffraction2D(array) s_r = s.radial_average() assert (s_r.data[:, :, :-2] == 1).all()
Example #23
Source File: test_pixelated_stem_class.py From pyxem with GNU General Public License v3.0 | 5 votes |
def test_big_value(self): data_shape = (5, 40, 40) big_value = 50000000 array0 = np.ones(shape=data_shape) * big_value s0 = Diffraction2D(array0) s0_r = s0.radial_average() assert s0_r.axes_manager.navigation_shape == data_shape[:1] assert (s0_r.data[:, :-1] == big_value).all()
Example #24
Source File: test_pixelated_stem_class.py From pyxem with GNU General Public License v3.0 | 5 votes |
def test_nav_0(self): data_shape = (40, 40) array0 = np.ones(shape=data_shape) s0 = Diffraction2D(array0) s0_r = s0.radial_average() assert s0_r.axes_manager.navigation_dimension == 0 assert (s0_r.data[:-1] == 1).all()
Example #25
Source File: test_pixelated_stem_class.py From pyxem with GNU General Public License v3.0 | 5 votes |
def test_different_shape(self): array = np.ones(shape=(7, 9, 30, 40)) s = Diffraction2D(array) s_r = s.radial_average() assert (s_r.data[:, :, :-2] == 1).all()
Example #26
Source File: test_pixelated_stem_class.py From pyxem with GNU General Public License v3.0 | 5 votes |
def test_simple(self): array0 = np.ones(shape=(10, 10, 40, 40)) s0 = Diffraction2D(array0) s0_r = s0.radial_average() assert (s0_r.data[:, :, :-1] == 1).all() data_shape = 2, 2, 11, 11 array1 = np.zeros(data_shape) array1[:, :, 5, 5] = 1 s1 = Diffraction2D(array1) s1.axes_manager.signal_axes[0].offset = -5 s1.axes_manager.signal_axes[1].offset = -5 s1_r = s1.radial_average() assert np.all(s1_r.data[:, :, 0] == 1) assert np.all(s1_r.data[:, :, 1:] == 0)
Example #27
Source File: test_pixelated_stem_class.py From pyxem with GNU General Public License v3.0 | 5 votes |
def test_lazy_result(self): data = da.ones((10, 10, 20, 20), chunks=(10, 10, 10, 10)) s_lazy = LazyDiffraction2D(data) s_lazy_com = s_lazy.center_of_mass(lazy_result=True) assert s_lazy_com._lazy
Example #28
Source File: test_pixelated_stem_class.py From pyxem with GNU General Public License v3.0 | 5 votes |
def test_non_lazy_input(self): data = np.ones((100, 90)) data[41, 21] = 0 data[9, 81] = 50000 s = Diffraction2D(data) s_dead_pixels = s.find_dead_pixels() s_hot_pixels = s.find_hot_pixels() s_bad_pixels = s_dead_pixels + s_hot_pixels s_corr = s.correct_bad_pixels(s_bad_pixels, lazy_result=False) assert s_dead_pixels.data.shape == data.shape assert not s_corr._lazy assert (s_corr.data == 1.0).all()
Example #29
Source File: test_pixelated_stem_class.py From pyxem with GNU General Public License v3.0 | 5 votes |
def test_2d(self): data = np.ones((100, 90)) data[41, 21] = 0 data[9, 81] = 50000 dask_array = da.from_array(data, chunks=(10, 10)) s = LazyDiffraction2D(dask_array) s_dead_pixels = s.find_dead_pixels(lazy_result=True) s_hot_pixels = s.find_hot_pixels(lazy_result=True) s_bad_pixels = s_dead_pixels + s_hot_pixels s_corr = s.correct_bad_pixels(s_bad_pixels) assert s_dead_pixels.data.shape == data.shape assert s_dead_pixels._lazy s_corr.compute() assert (s_corr.data == 1.0).all()
Example #30
Source File: test_dask_tools.py From pyxem with GNU General Public License v3.0 | 5 votes |
def test_different_chunks(self): data_array_dask = da.ones((6, 16, 100, 50), chunks=(6, 4, 50, 25)) peak_array_dask = da.empty((6, 16), chunks=(3, 2), dtype=np.object) dt._intensity_peaks_image(data_array_dask, peak_array_dask, 5)