Python vggish_params.OUTPUT_TENSOR_NAME Examples

The following are 2 code examples of vggish_params.OUTPUT_TENSOR_NAME(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module vggish_params , or try the search function .
Example #1
Source File: audio_transfer_learning.py    From sklearn-audio-transfer-learning with ISC License 5 votes vote down vote up
def extract_vggish_features(paths, path2gt, model): 
    """Extracts VGGish features and their corresponding ground_truth and identifiers (the path).

       VGGish features are extracted from non-overlapping audio patches of 0.96 seconds, 
       where each audio patch covers 64 mel bands and 96 frames of 10 ms each.

       We repeat ground_truth and identifiers to fit the number of extracted VGGish features.
    """
    # 1) Extract log-mel spectrograms
    first_audio = True
    for p in paths:
        if first_audio:
            input_data = vggish_input.wavfile_to_examples(config['audio_folder'] + p)
            ground_truth = np.repeat(path2gt[p], input_data.shape[0], axis=0)
            identifiers = np.repeat(p, input_data.shape[0], axis=0)
            first_audio = False
        else:
            tmp_in = vggish_input.wavfile_to_examples(config['audio_folder'] + p)
            input_data = np.concatenate((input_data, tmp_in), axis=0)
            tmp_gt = np.repeat(path2gt[p], tmp_in.shape[0], axis=0)
            ground_truth = np.concatenate((ground_truth, tmp_gt), axis=0)
            tmp_id = np.repeat(p, tmp_in.shape[0], axis=0)
            identifiers = np.concatenate((identifiers, tmp_id), axis=0)

    # 2) Load Tensorflow model to extract VGGish features
    with tf.Graph().as_default(), tf.Session() as sess:
        vggish_slim.define_vggish_slim(training=False)
        vggish_slim.load_vggish_slim_checkpoint(sess, 'vggish_model.ckpt')
        features_tensor = sess.graph.get_tensor_by_name(vggish_params.INPUT_TENSOR_NAME)
        embedding_tensor = sess.graph.get_tensor_by_name(vggish_params.OUTPUT_TENSOR_NAME)
        extracted_feat = sess.run([embedding_tensor], feed_dict={features_tensor: input_data})
        feature = np.squeeze(np.asarray(extracted_feat))

    return [feature, ground_truth, identifiers] 
Example #2
Source File: extract_audioset_embedding.py    From audioset_classification with MIT License 4 votes vote down vote up
def extract_audioset_embedding():
    """Extract log mel spectrogram features. 
    """
    
    # Arguments & parameters
    mel_bins = vggish_params.NUM_BANDS
    sample_rate = vggish_params.SAMPLE_RATE
    input_len = vggish_params.NUM_FRAMES
    embedding_size = vggish_params.EMBEDDING_SIZE
    
    '''You may modify the EXAMPLE_HOP_SECONDS in vggish_params.py to change the 
    hop size. '''

    # Paths
    audio_path = 'appendixes/01.wav'
    checkpoint_path = os.path.join('vggish_model.ckpt')
    pcm_params_path = os.path.join('vggish_pca_params.npz')
    
    if not os.path.isfile(checkpoint_path):
        raise Exception('Please download vggish_model.ckpt from '
            'https://storage.googleapis.com/audioset/vggish_model.ckpt '
            'and put it in the root of this codebase. ')
        
    if not os.path.isfile(pcm_params_path):
        raise Exception('Please download pcm_params_path from '
        'https://storage.googleapis.com/audioset/vggish_pca_params.npz '
        'and put it in the root of this codebase. ')
    
    # Load model
    sess = tf.Session()
    
    vggish_slim.define_vggish_slim(training=False)
    vggish_slim.load_vggish_slim_checkpoint(sess, checkpoint_path)
    features_tensor = sess.graph.get_tensor_by_name(vggish_params.INPUT_TENSOR_NAME)
    embedding_tensor = sess.graph.get_tensor_by_name(vggish_params.OUTPUT_TENSOR_NAME)
    
    pproc = vggish_postprocess.Postprocessor(pcm_params_path)

    # Read audio
    (audio, _) = read_audio(audio_path, target_fs=sample_rate)
    
    # Extract log mel feature
    logmel = vggish_input.waveform_to_examples(audio, sample_rate)

    # Extract embedding feature
    [embedding_batch] = sess.run([embedding_tensor], feed_dict={features_tensor: logmel})
    
    # PCA
    postprocessed_batch = pproc.postprocess(embedding_batch)
    
    print('Audio length: {}'.format(len(audio)))
    print('Log mel shape: {}'.format(logmel.shape))
    print('Embedding feature shape: {}'.format(postprocessed_batch.shape))