Python vggish_params.QUANTIZE_MAX_VAL Examples

The following are 9 code examples of vggish_params.QUANTIZE_MAX_VAL(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module vggish_params , or try the search function .
Example #1
Source File: vggish_postprocess.py    From Tensorflow-Audio-Classification with Apache License 2.0 5 votes vote down vote up
def postprocess(self, embeddings_batch):
    """Applies postprocessing to a batch of embeddings.

    Args:
      embeddings_batch: An nparray of shape [batch_size, embedding_size]
        containing output from the embedding layer of VGGish.

    Returns:
      An nparray of the same shape as the input but of type uint8,
      containing the PCA-transformed and quantized version of the input.
    """
    assert len(embeddings_batch.shape) == 2, (
        'Expected 2-d batch, got %r' % (embeddings_batch.shape,))
    assert embeddings_batch.shape[1] == vggish_params.EMBEDDING_SIZE, (
        'Bad batch shape: %r' % (embeddings_batch.shape,))

    # Apply PCA.
    # - Embeddings come in as [batch_size, embedding_size].
    # - Transpose to [embedding_size, batch_size].
    # - Subtract pca_means column vector from each column.
    # - Premultiply by PCA matrix of shape [output_dims, input_dims]
    #   where both are are equal to embedding_size in our case.
    # - Transpose result back to [batch_size, embedding_size].
    pca_applied = np.dot(self._pca_matrix,
                         (embeddings_batch.T - self._pca_means)).T

    # Quantize by:
    # - clipping to [min, max] range
    clipped_embeddings = np.clip(
        pca_applied, vggish_params.QUANTIZE_MIN_VAL,
        vggish_params.QUANTIZE_MAX_VAL)
    # - convert to 8-bit in range [0.0, 255.0]
    quantized_embeddings = (
        (clipped_embeddings - vggish_params.QUANTIZE_MIN_VAL) *
        (255.0 /
         (vggish_params.QUANTIZE_MAX_VAL - vggish_params.QUANTIZE_MIN_VAL)))
    # - cast 8-bit float to uint8
    quantized_embeddings = quantized_embeddings.astype(np.uint8)

    return quantized_embeddings 
Example #2
Source File: vggish_postprocess.py    From yolo_v2 with Apache License 2.0 5 votes vote down vote up
def postprocess(self, embeddings_batch):
    """Applies postprocessing to a batch of embeddings.

    Args:
      embeddings_batch: An nparray of shape [batch_size, embedding_size]
        containing output from the embedding layer of VGGish.

    Returns:
      An nparray of the same shape as the input but of type uint8,
      containing the PCA-transformed and quantized version of the input.
    """
    assert len(embeddings_batch.shape) == 2, (
        'Expected 2-d batch, got %r' % (embeddings_batch.shape,))
    assert embeddings_batch.shape[1] == vggish_params.EMBEDDING_SIZE, (
        'Bad batch shape: %r' % (embeddings_batch.shape,))

    # Apply PCA.
    # - Embeddings come in as [batch_size, embedding_size].
    # - Transpose to [embedding_size, batch_size].
    # - Subtract pca_means column vector from each column.
    # - Premultiply by PCA matrix of shape [output_dims, input_dims]
    #   where both are are equal to embedding_size in our case.
    # - Transpose result back to [batch_size, embedding_size].
    pca_applied = np.dot(self._pca_matrix,
                         (embeddings_batch.T - self._pca_means)).T

    # Quantize by:
    # - clipping to [min, max] range
    clipped_embeddings = np.clip(
        pca_applied, vggish_params.QUANTIZE_MIN_VAL,
        vggish_params.QUANTIZE_MAX_VAL)
    # - convert to 8-bit in range [0.0, 255.0]
    quantized_embeddings = (
        (clipped_embeddings - vggish_params.QUANTIZE_MIN_VAL) *
        (255.0 /
         (vggish_params.QUANTIZE_MAX_VAL - vggish_params.QUANTIZE_MIN_VAL)))
    # - cast 8-bit float to uint8
    quantized_embeddings = quantized_embeddings.astype(np.uint8)

    return quantized_embeddings 
Example #3
Source File: vggish_postprocess.py    From Gun-Detector with Apache License 2.0 5 votes vote down vote up
def postprocess(self, embeddings_batch):
    """Applies postprocessing to a batch of embeddings.

    Args:
      embeddings_batch: An nparray of shape [batch_size, embedding_size]
        containing output from the embedding layer of VGGish.

    Returns:
      An nparray of the same shape as the input but of type uint8,
      containing the PCA-transformed and quantized version of the input.
    """
    assert len(embeddings_batch.shape) == 2, (
        'Expected 2-d batch, got %r' % (embeddings_batch.shape,))
    assert embeddings_batch.shape[1] == vggish_params.EMBEDDING_SIZE, (
        'Bad batch shape: %r' % (embeddings_batch.shape,))

    # Apply PCA.
    # - Embeddings come in as [batch_size, embedding_size].
    # - Transpose to [embedding_size, batch_size].
    # - Subtract pca_means column vector from each column.
    # - Premultiply by PCA matrix of shape [output_dims, input_dims]
    #   where both are are equal to embedding_size in our case.
    # - Transpose result back to [batch_size, embedding_size].
    pca_applied = np.dot(self._pca_matrix,
                         (embeddings_batch.T - self._pca_means)).T

    # Quantize by:
    # - clipping to [min, max] range
    clipped_embeddings = np.clip(
        pca_applied, vggish_params.QUANTIZE_MIN_VAL,
        vggish_params.QUANTIZE_MAX_VAL)
    # - convert to 8-bit in range [0.0, 255.0]
    quantized_embeddings = (
        (clipped_embeddings - vggish_params.QUANTIZE_MIN_VAL) *
        (255.0 /
         (vggish_params.QUANTIZE_MAX_VAL - vggish_params.QUANTIZE_MIN_VAL)))
    # - cast 8-bit float to uint8
    quantized_embeddings = quantized_embeddings.astype(np.uint8)

    return quantized_embeddings 
Example #4
Source File: vggish_postprocess.py    From object_detection_kitti with Apache License 2.0 5 votes vote down vote up
def postprocess(self, embeddings_batch):
    """Applies postprocessing to a batch of embeddings.

    Args:
      embeddings_batch: An nparray of shape [batch_size, embedding_size]
        containing output from the embedding layer of VGGish.

    Returns:
      An nparray of the same shape as the input but of type uint8,
      containing the PCA-transformed and quantized version of the input.
    """
    assert len(embeddings_batch.shape) == 2, (
        'Expected 2-d batch, got %r' % (embeddings_batch.shape,))
    assert embeddings_batch.shape[1] == vggish_params.EMBEDDING_SIZE, (
        'Bad batch shape: %r' % (embeddings_batch.shape,))

    # Apply PCA.
    # - Embeddings come in as [batch_size, embedding_size].
    # - Transpose to [embedding_size, batch_size].
    # - Subtract pca_means column vector from each column.
    # - Premultiply by PCA matrix of shape [output_dims, input_dims]
    #   where both are are equal to embedding_size in our case.
    # - Transpose result back to [batch_size, embedding_size].
    pca_applied = np.dot(self._pca_matrix,
                         (embeddings_batch.T - self._pca_means)).T

    # Quantize by:
    # - clipping to [min, max] range
    clipped_embeddings = np.clip(
        pca_applied, vggish_params.QUANTIZE_MIN_VAL,
        vggish_params.QUANTIZE_MAX_VAL)
    # - convert to 8-bit in range [0.0, 255.0]
    quantized_embeddings = (
        (clipped_embeddings - vggish_params.QUANTIZE_MIN_VAL) *
        (255.0 /
         (vggish_params.QUANTIZE_MAX_VAL - vggish_params.QUANTIZE_MIN_VAL)))
    # - cast 8-bit float to uint8
    quantized_embeddings = quantized_embeddings.astype(np.uint8)

    return quantized_embeddings 
Example #5
Source File: vggish_postprocess.py    From object_detection_with_tensorflow with MIT License 5 votes vote down vote up
def postprocess(self, embeddings_batch):
    """Applies postprocessing to a batch of embeddings.

    Args:
      embeddings_batch: An nparray of shape [batch_size, embedding_size]
        containing output from the embedding layer of VGGish.

    Returns:
      An nparray of the same shape as the input but of type uint8,
      containing the PCA-transformed and quantized version of the input.
    """
    assert len(embeddings_batch.shape) == 2, (
        'Expected 2-d batch, got %r' % (embeddings_batch.shape,))
    assert embeddings_batch.shape[1] == vggish_params.EMBEDDING_SIZE, (
        'Bad batch shape: %r' % (embeddings_batch.shape,))

    # Apply PCA.
    # - Embeddings come in as [batch_size, embedding_size].
    # - Transpose to [embedding_size, batch_size].
    # - Subtract pca_means column vector from each column.
    # - Premultiply by PCA matrix of shape [output_dims, input_dims]
    #   where both are are equal to embedding_size in our case.
    # - Transpose result back to [batch_size, embedding_size].
    pca_applied = np.dot(self._pca_matrix,
                         (embeddings_batch.T - self._pca_means)).T

    # Quantize by:
    # - clipping to [min, max] range
    clipped_embeddings = np.clip(
        pca_applied, vggish_params.QUANTIZE_MIN_VAL,
        vggish_params.QUANTIZE_MAX_VAL)
    # - convert to 8-bit in range [0.0, 255.0]
    quantized_embeddings = (
        (clipped_embeddings - vggish_params.QUANTIZE_MIN_VAL) *
        (255.0 /
         (vggish_params.QUANTIZE_MAX_VAL - vggish_params.QUANTIZE_MIN_VAL)))
    # - cast 8-bit float to uint8
    quantized_embeddings = quantized_embeddings.astype(np.uint8)

    return quantized_embeddings 
Example #6
Source File: vggish_postprocess.py    From audioset_classification with MIT License 5 votes vote down vote up
def postprocess(self, embeddings_batch):
    """Applies postprocessing to a batch of embeddings.

    Args:
      embeddings_batch: An nparray of shape [batch_size, embedding_size]
        containing output from the embedding layer of VGGish.

    Returns:
      An nparray of the same shape as the input but of type uint8,
      containing the PCA-transformed and quantized version of the input.
    """
    assert len(embeddings_batch.shape) == 2, (
        'Expected 2-d batch, got %r' % (embeddings_batch.shape,))
    assert embeddings_batch.shape[1] == vggish_params.EMBEDDING_SIZE, (
        'Bad batch shape: %r' % (embeddings_batch.shape,))

    # Apply PCA.
    # - Embeddings come in as [batch_size, embedding_size].
    # - Transpose to [embedding_size, batch_size].
    # - Subtract pca_means column vector from each column.
    # - Premultiply by PCA matrix of shape [output_dims, input_dims]
    #   where both are are equal to embedding_size in our case.
    # - Transpose result back to [batch_size, embedding_size].
    pca_applied = np.dot(self._pca_matrix,
                         (embeddings_batch.T - self._pca_means)).T

    # Quantize by:
    # - clipping to [min, max] range
    clipped_embeddings = np.clip(
        pca_applied, vggish_params.QUANTIZE_MIN_VAL,
        vggish_params.QUANTIZE_MAX_VAL)
    # - convert to 8-bit in range [0.0, 255.0]
    quantized_embeddings = (
        (clipped_embeddings - vggish_params.QUANTIZE_MIN_VAL) *
        (255.0 /
         (vggish_params.QUANTIZE_MAX_VAL - vggish_params.QUANTIZE_MIN_VAL)))
    # - cast 8-bit float to uint8
    quantized_embeddings = quantized_embeddings.astype(np.uint8)

    return quantized_embeddings 
Example #7
Source File: vggish_postprocess.py    From g-tensorflow-models with Apache License 2.0 5 votes vote down vote up
def postprocess(self, embeddings_batch):
    """Applies postprocessing to a batch of embeddings.

    Args:
      embeddings_batch: An nparray of shape [batch_size, embedding_size]
        containing output from the embedding layer of VGGish.

    Returns:
      An nparray of the same shape as the input but of type uint8,
      containing the PCA-transformed and quantized version of the input.
    """
    assert len(embeddings_batch.shape) == 2, (
        'Expected 2-d batch, got %r' % (embeddings_batch.shape,))
    assert embeddings_batch.shape[1] == vggish_params.EMBEDDING_SIZE, (
        'Bad batch shape: %r' % (embeddings_batch.shape,))

    # Apply PCA.
    # - Embeddings come in as [batch_size, embedding_size].
    # - Transpose to [embedding_size, batch_size].
    # - Subtract pca_means column vector from each column.
    # - Premultiply by PCA matrix of shape [output_dims, input_dims]
    #   where both are are equal to embedding_size in our case.
    # - Transpose result back to [batch_size, embedding_size].
    pca_applied = np.dot(self._pca_matrix,
                         (embeddings_batch.T - self._pca_means)).T

    # Quantize by:
    # - clipping to [min, max] range
    clipped_embeddings = np.clip(
        pca_applied, vggish_params.QUANTIZE_MIN_VAL,
        vggish_params.QUANTIZE_MAX_VAL)
    # - convert to 8-bit in range [0.0, 255.0]
    quantized_embeddings = (
        (clipped_embeddings - vggish_params.QUANTIZE_MIN_VAL) *
        (255.0 /
         (vggish_params.QUANTIZE_MAX_VAL - vggish_params.QUANTIZE_MIN_VAL)))
    # - cast 8-bit float to uint8
    quantized_embeddings = quantized_embeddings.astype(np.uint8)

    return quantized_embeddings 
Example #8
Source File: vggish_postprocess.py    From models with Apache License 2.0 5 votes vote down vote up
def postprocess(self, embeddings_batch):
    """Applies postprocessing to a batch of embeddings.

    Args:
      embeddings_batch: An nparray of shape [batch_size, embedding_size]
        containing output from the embedding layer of VGGish.

    Returns:
      An nparray of the same shape as the input but of type uint8,
      containing the PCA-transformed and quantized version of the input.
    """
    assert len(embeddings_batch.shape) == 2, (
        'Expected 2-d batch, got %r' % (embeddings_batch.shape,))
    assert embeddings_batch.shape[1] == vggish_params.EMBEDDING_SIZE, (
        'Bad batch shape: %r' % (embeddings_batch.shape,))

    # Apply PCA.
    # - Embeddings come in as [batch_size, embedding_size].
    # - Transpose to [embedding_size, batch_size].
    # - Subtract pca_means column vector from each column.
    # - Premultiply by PCA matrix of shape [output_dims, input_dims]
    #   where both are are equal to embedding_size in our case.
    # - Transpose result back to [batch_size, embedding_size].
    pca_applied = np.dot(self._pca_matrix,
                         (embeddings_batch.T - self._pca_means)).T

    # Quantize by:
    # - clipping to [min, max] range
    clipped_embeddings = np.clip(
        pca_applied, vggish_params.QUANTIZE_MIN_VAL,
        vggish_params.QUANTIZE_MAX_VAL)
    # - convert to 8-bit in range [0.0, 255.0]
    quantized_embeddings = (
        (clipped_embeddings - vggish_params.QUANTIZE_MIN_VAL) *
        (255.0 /
         (vggish_params.QUANTIZE_MAX_VAL - vggish_params.QUANTIZE_MIN_VAL)))
    # - cast 8-bit float to uint8
    quantized_embeddings = quantized_embeddings.astype(np.uint8)

    return quantized_embeddings 
Example #9
Source File: vggish_postprocess.py    From multilabel-image-classification-tensorflow with MIT License 5 votes vote down vote up
def postprocess(self, embeddings_batch):
    """Applies postprocessing to a batch of embeddings.

    Args:
      embeddings_batch: An nparray of shape [batch_size, embedding_size]
        containing output from the embedding layer of VGGish.

    Returns:
      An nparray of the same shape as the input but of type uint8,
      containing the PCA-transformed and quantized version of the input.
    """
    assert len(embeddings_batch.shape) == 2, (
        'Expected 2-d batch, got %r' % (embeddings_batch.shape,))
    assert embeddings_batch.shape[1] == vggish_params.EMBEDDING_SIZE, (
        'Bad batch shape: %r' % (embeddings_batch.shape,))

    # Apply PCA.
    # - Embeddings come in as [batch_size, embedding_size].
    # - Transpose to [embedding_size, batch_size].
    # - Subtract pca_means column vector from each column.
    # - Premultiply by PCA matrix of shape [output_dims, input_dims]
    #   where both are are equal to embedding_size in our case.
    # - Transpose result back to [batch_size, embedding_size].
    pca_applied = np.dot(self._pca_matrix,
                         (embeddings_batch.T - self._pca_means)).T

    # Quantize by:
    # - clipping to [min, max] range
    clipped_embeddings = np.clip(
        pca_applied, vggish_params.QUANTIZE_MIN_VAL,
        vggish_params.QUANTIZE_MAX_VAL)
    # - convert to 8-bit in range [0.0, 255.0]
    quantized_embeddings = (
        (clipped_embeddings - vggish_params.QUANTIZE_MIN_VAL) *
        (255.0 /
         (vggish_params.QUANTIZE_MAX_VAL - vggish_params.QUANTIZE_MIN_VAL)))
    # - cast 8-bit float to uint8
    quantized_embeddings = quantized_embeddings.astype(np.uint8)

    return quantized_embeddings