Python numpy.divide() Examples
The following are 30
code examples of numpy.divide().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example #1
Source File: mpi_adam_optimizer.py From Reinforcement_Learning_for_Traffic_Light_Control with Apache License 2.0 | 6 votes |
def compute_gradients(self, loss, var_list, **kwargs): grads_and_vars = tf.train.AdamOptimizer.compute_gradients(self, loss, var_list, **kwargs) grads_and_vars = [(g, v) for g, v in grads_and_vars if g is not None] flat_grad = tf.concat([tf.reshape(g, (-1,)) for g, v in grads_and_vars], axis=0) shapes = [v.shape.as_list() for g, v in grads_and_vars] sizes = [int(np.prod(s)) for s in shapes] num_tasks = self.comm.Get_size() buf = np.zeros(sum(sizes), np.float32) def _collect_grads(flat_grad): self.comm.Allreduce(flat_grad, buf, op=MPI.SUM) np.divide(buf, float(num_tasks), out=buf) return buf avg_flat_grad = tf.py_func(_collect_grads, [flat_grad], tf.float32) avg_flat_grad.set_shape(flat_grad.shape) avg_grads = tf.split(avg_flat_grad, sizes, axis=0) avg_grads_and_vars = [(tf.reshape(g, v.shape), v) for g, (_, v) in zip(avg_grads, grads_and_vars)] return avg_grads_and_vars
Example #2
Source File: test_timedelta64.py From recruit with Apache License 2.0 | 6 votes |
def test_td64arr_rmul_numeric_array(self, box_with_array, vector, dtype): # GH#4521 # divide/multiply by integers xbox = get_upcast_box(box_with_array, vector) tdser = pd.Series(['59 Days', '59 Days', 'NaT'], dtype='m8[ns]') vector = vector.astype(dtype) expected = Series(['1180 Days', '1770 Days', 'NaT'], dtype='timedelta64[ns]') tdser = tm.box_expected(tdser, box_with_array) expected = tm.box_expected(expected, xbox) result = tdser * vector tm.assert_equal(result, expected) result = vector * tdser tm.assert_equal(result, expected)
Example #3
Source File: mpi_adam_optimizer.py From Reinforcement_Learning_for_Traffic_Light_Control with Apache License 2.0 | 6 votes |
def compute_gradients(self, loss, var_list, **kwargs): grads_and_vars = tf.train.AdamOptimizer.compute_gradients(self, loss, var_list, **kwargs) grads_and_vars = [(g, v) for g, v in grads_and_vars if g is not None] flat_grad = tf.concat([tf.reshape(g, (-1,)) for g, v in grads_and_vars], axis=0) shapes = [v.shape.as_list() for g, v in grads_and_vars] sizes = [int(np.prod(s)) for s in shapes] num_tasks = self.comm.Get_size() buf = np.zeros(sum(sizes), np.float32) def _collect_grads(flat_grad): self.comm.Allreduce(flat_grad, buf, op=MPI.SUM) np.divide(buf, float(num_tasks), out=buf) return buf avg_flat_grad = tf.py_func(_collect_grads, [flat_grad], tf.float32) avg_flat_grad.set_shape(flat_grad.shape) avg_grads = tf.split(avg_flat_grad, sizes, axis=0) avg_grads_and_vars = [(tf.reshape(g, v.shape), v) for g, (_, v) in zip(avg_grads, grads_and_vars)] return avg_grads_and_vars
Example #4
Source File: test_numeric.py From recruit with Apache License 2.0 | 6 votes |
def test_warnings(self): # test warning code path with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") with np.errstate(all="warn"): np.divide(1, 0.) assert_equal(len(w), 1) assert_("divide by zero" in str(w[0].message)) np.array(1e300) * np.array(1e300) assert_equal(len(w), 2) assert_("overflow" in str(w[-1].message)) np.array(np.inf) - np.array(np.inf) assert_equal(len(w), 3) assert_("invalid value" in str(w[-1].message)) np.array(1e-300) * np.array(1e-300) assert_equal(len(w), 4) assert_("underflow" in str(w[-1].message))
Example #5
Source File: geometry.py From connecting_the_dots with MIT License | 6 votes |
def axisangle_from_rotm(R): # logarithm of rotation matrix # R = R.reshape(-1,3,3) # tr = np.trace(R, axis1=1, axis2=2) # phi = np.arccos(np.clip((tr - 1) / 2, -1, 1)) # scale = np.zeros_like(phi) # div = 2 * np.sin(phi) # np.divide(phi, div, out=scale, where=np.abs(div) > 1e-6) # A = (R - R.transpose(0,2,1)) * scale.reshape(-1,1,1) # aa = np.stack((A[:,2,1], A[:,0,2], A[:,1,0]), axis=1) # return aa.squeeze() R = R.reshape(-1,3,3) omega = np.empty((R.shape[0], 3), dtype=R.dtype) omega[:,0] = R[:,2,1] - R[:,1,2] omega[:,1] = R[:,0,2] - R[:,2,0] omega[:,2] = R[:,1,0] - R[:,0,1] r = np.linalg.norm(omega, axis=1).reshape(-1,1) t = np.trace(R, axis1=1, axis2=2).reshape(-1,1) omega = np.arctan2(r, t-1) * omega aa = np.zeros_like(omega) np.divide(omega, r, out=aa, where=r != 0) return aa.squeeze()
Example #6
Source File: em.py From typhon with MIT License | 6 votes |
def planck(f, T): """Calculate black body radiation for given frequency and temperature. Parameters: f (float or ndarray): Frquencies [Hz]. T (float or ndarray): Temperature [K]. Returns: float or ndarray: Radiances. """ c = constants.speed_of_light h = constants.planck k = constants.boltzmann return 2 * h * f**3 / (c**2 * (np.exp(np.divide(h * f, (k * T))) - 1))
Example #7
Source File: utils.py From speech_separation with MIT License | 6 votes |
def cRM_tanh_compress(M,K=10,C=0.1): ''' Recall that the irm takes on vlaues in the range[0,1],compress the cRM with hyperbolic tangent :param M: crm (298,257,2) :param K: parameter to control the compression :param C: parameter to control the compression :return crm: compressed crm ''' numerator = 1-np.exp(-C*M) numerator[numerator == inf] = 1 numerator[numerator == -inf] = -1 denominator = 1+np.exp(-C*M) denominator[denominator == inf] = 1 denominator[denominator == -inf] = -1 crm = K * np.divide(numerator,denominator) return crm
Example #8
Source File: utils.py From speech_separation with MIT License | 6 votes |
def generate_cRM(Y,S): ''' :param Y: mixed/noisy stft :param S: clean stft :return: structed cRM ''' M = np.zeros(Y.shape) epsilon = 1e-8 # real part M_real = np.multiply(Y[:,:,0],S[:,:,0])+np.multiply(Y[:,:,1],S[:,:,1]) square_real = np.square(Y[:,:,0])+np.square(Y[:,:,1]) M_real = np.divide(M_real,square_real+epsilon) M[:,:,0] = M_real # imaginary part M_img = np.multiply(Y[:,:,0],S[:,:,1])-np.multiply(Y[:,:,1],S[:,:,0]) square_img = np.square(Y[:,:,0])+np.square(Y[:,:,1]) M_img = np.divide(M_img,square_img+epsilon) M[:,:,1] = M_img return M
Example #9
Source File: em.py From typhon with MIT License | 6 votes |
def planck_wavelength(l, T): """Calculate black body radiation for given wavelength and temperature. Parameters: l (float or ndarray): Wavelength [m]. T (float or ndarray): Temperature [K]. Returns: float or ndarray: Radiances. """ c = constants.speed_of_light h = constants.planck k = constants.boltzmann return 2 * h * c**2 / (l**5 * (np.exp(np.divide(h * c, (l * k * T))) - 1))
Example #10
Source File: em.py From typhon with MIT License | 6 votes |
def planck_wavenumber(n, T): """Calculate black body radiation for given wavenumber and temperature. Parameters: n (float or ndarray): Wavenumber. T (float or ndarray): Temperature [K]. Returns: float or ndarray: Radiances. """ c = constants.speed_of_light h = constants.planck k = constants.boltzmann return 2 * h * c**2 * n**3 / (np.exp(np.divide(h * c * n, (k * T))) - 1)
Example #11
Source File: em.py From typhon with MIT License | 6 votes |
def rayleighjeans_wavelength(l, T): """Calculates the Rayleigh-Jeans approximation of the Planck function. Calculates the approximation of the Planck function for given wavelength and temperature. Parameters: l (float or ndarray): Wavelength [m]. T (float or ndarray): Temperature [K]. Returns: float or ndarray: Radiance [W/(m2*Hz*sr)]. """ c = constants.speed_of_light k = constants.boltzmann return np.divide(2 * c * k * T, l**4)
Example #12
Source File: mpi_adam_optimizer.py From Reinforcement_Learning_for_Traffic_Light_Control with Apache License 2.0 | 6 votes |
def compute_gradients(self, loss, var_list, **kwargs): grads_and_vars = tf.train.AdamOptimizer.compute_gradients(self, loss, var_list, **kwargs) grads_and_vars = [(g, v) for g, v in grads_and_vars if g is not None] flat_grad = tf.concat([tf.reshape(g, (-1,)) for g, v in grads_and_vars], axis=0) shapes = [v.shape.as_list() for g, v in grads_and_vars] sizes = [int(np.prod(s)) for s in shapes] num_tasks = self.comm.Get_size() buf = np.zeros(sum(sizes), np.float32) def _collect_grads(flat_grad): self.comm.Allreduce(flat_grad, buf, op=MPI.SUM) np.divide(buf, float(num_tasks), out=buf) return buf avg_flat_grad = tf.py_func(_collect_grads, [flat_grad], tf.float32) avg_flat_grad.set_shape(flat_grad.shape) avg_grads = tf.split(avg_flat_grad, sizes, axis=0) avg_grads_and_vars = [(tf.reshape(g, v.shape), v) for g, (_, v) in zip(avg_grads, grads_and_vars)] return avg_grads_and_vars
Example #13
Source File: tiles.py From argus-freesound with MIT License | 6 votes |
def merge(self, tiles: List[np.ndarray], dtype=np.float32): if len(tiles) != len(self.crops): raise ValueError channels = 1 if len(tiles[0].shape) == 2 else tiles[0].shape[2] target_shape = self.image_height + self.margin_bottom + self.margin_top, self.image_width + self.margin_right + self.margin_left, channels image = np.zeros(target_shape, dtype=np.float64) norm_mask = np.zeros(target_shape, dtype=np.float64) w = np.dstack([self.weight] * channels) for tile, (x, y, tile_width, tile_height) in zip(tiles, self.crops): # print(x, y, tile_width, tile_height, image.shape) image[y:y + tile_height, x:x + tile_width] += tile * w norm_mask[y:y + tile_height, x:x + tile_width] += w # print(norm_mask.min(), norm_mask.max()) norm_mask = np.clip(norm_mask, a_min=np.finfo(norm_mask.dtype).eps, a_max=None) normalized = np.divide(image, norm_mask).astype(dtype) crop = self.crop_to_orignal_size(normalized) return crop
Example #14
Source File: mpi_adam_optimizer.py From HardRLWithYoutube with MIT License | 6 votes |
def compute_gradients(self, loss, var_list, **kwargs): grads_and_vars = tf.train.AdamOptimizer.compute_gradients(self, loss, var_list, **kwargs) grads_and_vars = [(g, v) for g, v in grads_and_vars if g is not None] flat_grad = tf.concat([tf.reshape(g, (-1,)) for g, v in grads_and_vars], axis=0) shapes = [v.shape.as_list() for g, v in grads_and_vars] sizes = [int(np.prod(s)) for s in shapes] num_tasks = self.comm.Get_size() buf = np.zeros(sum(sizes), np.float32) def _collect_grads(flat_grad): self.comm.Allreduce(flat_grad, buf, op=MPI.SUM) np.divide(buf, float(num_tasks), out=buf) return buf avg_flat_grad = tf.py_func(_collect_grads, [flat_grad], tf.float32) avg_flat_grad.set_shape(flat_grad.shape) avg_grads = tf.split(avg_flat_grad, sizes, axis=0) avg_grads_and_vars = [(tf.reshape(g, v.shape), v) for g, (_, v) in zip(avg_grads, grads_and_vars)] return avg_grads_and_vars
Example #15
Source File: SpectralClustering.py From sparse-subspace-clustering-python with MIT License | 6 votes |
def SpectralClustering(CKSym, n): # This is direct port of JHU vision lab code. Could probably use sklearn SpectralClustering. CKSym = CKSym.astype(float) N, _ = CKSym.shape MAXiter = 1000 # Maximum number of iterations for KMeans REPlic = 20 # Number of replications for KMeans DN = np.diag(np.divide(1, np.sqrt(np.sum(CKSym, axis=0) + np.finfo(float).eps))) LapN = identity(N).toarray().astype(float) - np.matmul(np.matmul(DN, CKSym), DN) _, _, vN = np.linalg.svd(LapN) vN = vN.T kerN = vN[:, N - n:N] normN = np.sqrt(np.sum(np.square(kerN), axis=1)) kerNS = np.divide(kerN, normN.reshape(len(normN), 1) + np.finfo(float).eps) km = KMeans(n_clusters=n, n_init=REPlic, max_iter=MAXiter, n_jobs=-1).fit(kerNS) return km.labels_
Example #16
Source File: em.py From typhon with MIT License | 5 votes |
def wavelength2wavenumber(wavelength): """Convert wavelength to wavenumber. Parameters: wavelength (float or ndarray): Wavelength [m]. Returns: float or ndarray: Wavenumber [m^-1]. """ return np.divide(1, wavelength)
Example #17
Source File: test_umath.py From recruit with Apache License 2.0 | 5 votes |
def test_special(self): with np.errstate(invalid="ignore", divide="ignore"): assert_equal(ncu.log1p(np.nan), np.nan) assert_equal(ncu.log1p(np.inf), np.inf) assert_equal(ncu.log1p(-1.), -np.inf) assert_equal(ncu.log1p(-2.), np.nan) assert_equal(ncu.log1p(-np.inf), np.nan)
Example #18
Source File: test_umath.py From recruit with Apache License 2.0 | 5 votes |
def test_ufunc_override_exception(self): class A(object): def __array_ufunc__(self, *a, **kwargs): raise ValueError("oops") a = A() assert_raises(ValueError, np.negative, 1, out=a) assert_raises(ValueError, np.negative, a) assert_raises(ValueError, np.divide, 1., a)
Example #19
Source File: em.py From typhon with MIT License | 5 votes |
def frequency2wavelength(frequency): """Convert frequency to wavelength. Parameters: frequency (float or ndarray): Frequency [Hz]. Returns: float or ndarray: Wavelength [m]. """ return np.divide(constants.speed_of_light, frequency)
Example #20
Source File: em.py From typhon with MIT License | 5 votes |
def wavelength2frequency(wavelength): """Convert wavelength to frequency. Parameters: wavelength (float or ndarray): Wavelength [m]. Returns: float or ndarray: Frequency [Hz]. """ return np.divide(constants.speed_of_light, wavelength)
Example #21
Source File: test_timedelta64.py From recruit with Apache License 2.0 | 5 votes |
def test_td64arr_div_numeric_scalar(self, box_with_array, two): # GH#4521 # divide/multiply by integers tdser = pd.Series(['59 Days', '59 Days', 'NaT'], dtype='m8[ns]') expected = Series(['29.5D', '29.5D', 'NaT'], dtype='timedelta64[ns]') tdser = tm.box_expected(tdser, box_with_array) expected = tm.box_expected(expected, box_with_array) result = tdser / two tm.assert_equal(result, expected) with pytest.raises(TypeError, match='Cannot divide'): two / tdser
Example #22
Source File: test_umath.py From recruit with Apache License 2.0 | 5 votes |
def test_zero_division_complex(self): with np.errstate(invalid="ignore", divide="ignore"): x = np.array([0.0], dtype=np.complex128) y = 1.0/x assert_(np.isinf(y)[0]) y = complex(np.inf, np.nan)/x assert_(np.isinf(y)[0]) y = complex(np.nan, np.inf)/x assert_(np.isinf(y)[0]) y = complex(np.inf, np.inf)/x assert_(np.isinf(y)[0]) y = 0.0/x assert_(np.isnan(y)[0])
Example #23
Source File: test_numeric.py From recruit with Apache License 2.0 | 5 votes |
def test_divide_err(self): with np.errstate(divide='raise'): with assert_raises(FloatingPointError): np.array([1.]) / np.array([0.]) np.seterr(divide='ignore') np.array([1.]) / np.array([0.])
Example #24
Source File: test_numeric.py From recruit with Apache License 2.0 | 5 votes |
def test_set(self): with np.errstate(): err = np.seterr() old = np.seterr(divide='print') assert_(err == old) new = np.seterr() assert_(new['divide'] == 'print') np.seterr(over='raise') assert_(np.geterr()['over'] == 'raise') assert_(new['divide'] == 'print') np.seterr(**old) assert_(np.geterr() == old)
Example #25
Source File: test_numeric.py From recruit with Apache License 2.0 | 5 votes |
def test_default(self): err = np.geterr() assert_equal(err, dict(divide='warn', invalid='warn', over='warn', under='ignore') )
Example #26
Source File: test_ufunc.py From recruit with Apache License 2.0 | 5 votes |
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod, np.greater, np.greater_equal, np.less, np.less_equal, np.equal, np.not_equal] a = np.array('1') b = 1 c = np.array([1., 2.]) for f in binary_funcs: assert_raises(TypeError, f, a, b) assert_raises(TypeError, f, c, a)
Example #27
Source File: test_ufunc.py From recruit with Apache License 2.0 | 5 votes |
def test_identityless_reduction_nonreorderable(self): a = np.array([[8.0, 2.0, 2.0], [1.0, 0.5, 0.25]]) res = np.divide.reduce(a, axis=0) assert_equal(res, [8.0, 4.0, 8.0]) res = np.divide.reduce(a, axis=1) assert_equal(res, [2.0, 8.0]) res = np.divide.reduce(a, axis=()) assert_equal(res, a) assert_raises(ValueError, np.divide.reduce, a, axis=(0, 1))
Example #28
Source File: test_core.py From recruit with Apache License 2.0 | 5 votes |
def test_inplace_division_scalar_type(self): # Test of inplace division for t in self.othertypes: with suppress_warnings() as sup: sup.record(UserWarning) (x, y, xm) = (_.astype(t) for _ in self.uint8data) x = arange(10, dtype=t) * t(2) xm = arange(10, dtype=t) * t(2) xm[2] = masked # May get a DeprecationWarning or a TypeError. # # This is a consequence of the fact that this is true divide # and will require casting to float for calculation and # casting back to the original type. This will only be raised # with integers. Whether it is an error or warning is only # dependent on how stringent the casting rules are. # # Will handle the same way. try: x /= t(2) assert_equal(x, y) except (DeprecationWarning, TypeError) as e: warnings.warn(str(e), stacklevel=1) try: xm /= t(2) assert_equal(xm, y) except (DeprecationWarning, TypeError) as e: warnings.warn(str(e), stacklevel=1) if issubclass(t, np.integer): assert_equal(len(sup.log), 2, "Failed on type=%s." % t) else: assert_equal(len(sup.log), 0, "Failed on type=%s." % t)
Example #29
Source File: test_core.py From recruit with Apache License 2.0 | 5 votes |
def test_no_masked_nan_warnings(self): # check that a nan in masked position does not # cause ufunc warnings m = np.ma.array([0.5, np.nan], mask=[0,1]) with warnings.catch_warnings(): warnings.filterwarnings("error") # test unary and binary ufuncs exp(m) add(m, 1) m > 0 # test different unary domains sqrt(m) log(m) tan(m) arcsin(m) arccos(m) arccosh(m) # test binary domains divide(m, 2) # also check that allclose uses ma ufuncs, to avoid warning allclose(m, 0.5)
Example #30
Source File: test_core.py From recruit with Apache License 2.0 | 5 votes |
def test_testUfuncRegression(self): # Tests new ufuncs on MaskedArrays. for f in ['sqrt', 'log', 'log10', 'exp', 'conjugate', 'sin', 'cos', 'tan', 'arcsin', 'arccos', 'arctan', 'sinh', 'cosh', 'tanh', 'arcsinh', 'arccosh', 'arctanh', 'absolute', 'fabs', 'negative', 'floor', 'ceil', 'logical_not', 'add', 'subtract', 'multiply', 'divide', 'true_divide', 'floor_divide', 'remainder', 'fmod', 'hypot', 'arctan2', 'equal', 'not_equal', 'less_equal', 'greater_equal', 'less', 'greater', 'logical_and', 'logical_or', 'logical_xor', ]: try: uf = getattr(umath, f) except AttributeError: uf = getattr(fromnumeric, f) mf = getattr(numpy.ma.core, f) args = self.d[:uf.nin] ur = uf(*args) mr = mf(*args) assert_equal(ur.filled(0), mr.filled(0), f) assert_mask_equal(ur.mask, mr.mask, err_msg=f)