Python timeit.default_timer() Examples
The following are 30
code examples of timeit.default_timer().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
timeit
, or try the search function
.
Example #1
Source File: poolImprovement.py From Learning-Concurrency-in-Python with MIT License | 8 votes |
def main(): t1 = timeit.default_timer() with ProcessPoolExecutor(max_workers=4) as executor: for number, prime in zip(PRIMES, executor.map(is_prime, PRIMES)): print('%d is prime: %s' % (number, prime)) print("{} Seconds Needed for ProcessPoolExecutor".format(timeit.default_timer() - t1)) t2 = timeit.default_timer() with ThreadPoolExecutor(max_workers=4) as executor: for number, prime in zip(PRIMES, executor.map(is_prime, PRIMES)): print('%d is prime: %s' % (number, prime)) print("{} Seconds Needed for ThreadPoolExecutor".format(timeit.default_timer() - t2)) t3 = timeit.default_timer() for number in PRIMES: isPrime = is_prime(number) print("{} is prime: {}".format(number, isPrime)) print("{} Seconds needed for single threaded execution".format(timeit.default_timer()-t3))
Example #2
Source File: v2_validation.py From Attentive-Filtering-Network with MIT License | 7 votes |
def best_eer(val_scores, utt2len, utt2label, key_list): def f_neg(threshold): ## Scipy tries to minimize the function return utt_eer(val_scores, utt2len, utt2label, key_list, threshold) # Initialization of best threshold search thr_0 = [0.20] * 1 # binary class constraints = [(0.,1.)] * 1 # binary class def bounds(**kwargs): x = kwargs["x_new"] tmax = bool(np.all(x <= 1)) tmin = bool(np.all(x >= 0)) return tmax and tmin # Search using L-BFGS-B, the epsilon step must be big otherwise there is no gradient minimizer_kwargs = {"method": "L-BFGS-B", "bounds":constraints, "options":{ "eps": 0.05 } } # We combine L-BFGS-B with Basinhopping for stochastic search with random steps logger.info("===> Searching optimal threshold for each label") start_time = timer() opt_output = basinhopping(f_neg, thr_0, stepsize = 0.1, minimizer_kwargs=minimizer_kwargs, niter=10, accept_test=bounds) end_time = timer() logger.info("===> Optimal threshold for each label:\n{}".format(opt_output.x)) logger.info("Threshold found in: %s seconds" % (end_time - start_time)) score = opt_output.fun return score, opt_output.x
Example #3
Source File: L.E.S.M.A. - Fabrica de Noobs Speedtest.py From L.E.S.M.A with Apache License 2.0 | 7 votes |
def run(self): request = self.request try: if ((timeit.default_timer() - self.starttime) <= self.timeout and not SHUTDOWN_EVENT.isSet()): try: f = urlopen(request) except TypeError: # PY24 expects a string or buffer # This also causes issues with Ctrl-C, but we will concede # for the moment that Ctrl-C on PY24 isn't immediate request = build_request(self.request.get_full_url(), data=request.data.read(self.size)) f = urlopen(request) f.read(11) f.close() self.result = sum(self.request.data.total) else: self.result = 0 except (IOError, SpeedtestUploadTimeout): self.result = sum(self.request.data.total)
Example #4
Source File: scf.py From pyscf with Apache License 2.0 | 6 votes |
def get_k(self, dm=None, **kw): '''Compute K matrix for the given density matrix.''' from pyscf.nao.m_kmat_den import kmat_den if dm is None: dm = self.make_rdm1() if False: print(__name__, ' get_k: self.kmat_algo ', self.kmat_algo, dm.shape) if len(dm.shape)==5: print(__name__, 'nelec dm', (dm[0,:,:,:,0]*self.overlap_lil().toarray()).sum()) elif len(dm.shape)==2 or len(dm.shape)==3: print(__name__, 'nelec dm', (dm*self.overlap_lil().toarray()).sum()) else: print(__name__, dm.shape) kmat_algo = kw['kmat_algo'] if 'kmat_algo' in kw else self.kmat_algo #if self.verbosity>1: print(__name__, "\t\t====> Matrix elements of Fock exchange operator will be calculated by using '{}' algorithm.\f".format(kmat_algo)) return kmat_den(self, dm=dm, algo=kmat_algo, **kw) if self.kmat_timing is not None: t1 = timer() kmat = kmat_den(self, dm=dm, algo=kmat_algo, **kw) if self.kmat_timing is not None: self.kmat_timing += timer()-t1 return kmat
Example #5
Source File: stac_validator.py From stac-validator with Apache License 2.0 | 6 votes |
def main(): args = docopt(__doc__) follow = args.get("--follow") stac_file = args.get("<stac_file>") stac_spec_dirs = args.get("--spec_dirs", None) version = args.get("--version") verbose = args.get("--verbose") nthreads = args.get("--threads", 10) timer = args.get("--timer") log_level = args.get("--log_level", "CRITICAL") if timer: start = default_timer() stac = StacValidate(stac_file, stac_spec_dirs, version, log_level, follow) _ = stac.run(nthreads) shutil.rmtree(stac.dirpath) if verbose: print(json.dumps(stac.message, indent=4)) else: print(json.dumps(stac.status, indent=4)) if timer: print(f"Validator took {default_timer() - start:.2f} seconds")
Example #6
Source File: test_edgeembeds.py From EvalNE with MIT License | 6 votes |
def time_test(): # Create a dictionary simulating the node embeddings keys = map(str, range(100)) vals = np.random.randn(100, 10) d = dict(zip(keys, vals)) # Create set of edges num_edges = 1000000 edges = list(zip(np.random.randint(0, 100, num_edges), np.random.randint(0, 100, num_edges))) start = timeit.default_timer() res = edge_embeddings.compute_edge_embeddings(d, edges, "average") end = timeit.default_timer() - start print("Processed in: {}".format(end))
Example #7
Source File: utilities.py From pytim with GNU General Public License v3.0 | 6 votes |
def lap(show=False): """ Timer function :param bool show: (optional) print timer information to stderr """ if not hasattr(lap, "tic"): lap.tic = timer() else: toc = timer() dt = toc - lap.tic lap.tic = toc if show: stderr.write("LAP >>> " + str(dt) + "\n") return dt
Example #8
Source File: m_prod_basis_obsolete.py From pyscf with Apache License 2.0 | 6 votes |
def init_prod_basis_pp(self, sv, **kvargs): """ Talman's procedure should be working well with Pseudo-Potential starting point.""" from pyscf.nao.m_prod_biloc import prod_biloc_c #t1 = timer() self.init_inp_param_prod_log_dp(sv, **kvargs) data = self.chain_data() libnao.init_vrtx_cc_apair(data.ctypes.data_as(POINTER(c_double)), c_int64(len(data))) self.sv_pbloc_data = True #t2 = timer(); print(t2-t1); t1=timer(); self.bp2info = [] # going to be some information including indices of atoms, list of contributing centres, conversion coefficients for ia1 in range(sv.natoms): rc1 = sv.ao_log.sp2rcut[sv.atom2sp[ia1]] for ia2 in range(ia1+1,sv.natoms): rc2,dist = sv.ao_log.sp2rcut[sv.atom2sp[ia2]], sqrt(((sv.atom2coord[ia1]-sv.atom2coord[ia2])**2).sum()) if dist>rc1+rc2 : continue pbiloc = self.comp_apair_pp_libint(ia1,ia2) if pbiloc is not None : self.bp2info.append(pbiloc) self.dpc2s,self.dpc2t,self.dpc2sp = self.init_c2s_domiprod() # dominant product's counting self.npdp = self.dpc2s[-1] self.norbs = self.sv.norbs return self
Example #9
Source File: m_log_interp.py From pyscf with Apache License 2.0 | 6 votes |
def interp_rcut(self, ff, rr, rcut=None): """ Interpolation of vector data ff[...,:] and vector arguments rr[:] """ assert ff.shape[-1]==self.nr ffa = ff.reshape(ff.size//self.nr, self.nr) if rcut is None: rcut = self.gg[-1] rra = rr.reshape(-1) if type(rr)==np.ndarray else np.array([rr]) #t0 = timer() r2l,r2k,ir2cc = self.coeffs_rcut(rra, rcut) #t1 = timer() fr2v = np.zeros(ffa.shape[0:-1]+rra.shape[:]) #print(__name__, fr2v.shape, fr2v[:,r2l[0]].shape, r2l[0].shape) #print(__name__, 'ff ', type(ff)) for j in range(6): fr2v[:,r2l[0]]+= ffa[:,r2k+j]*ir2cc[j] #t2 = timer() #print(__name__, 'times: ', t1-t0, t2-t1) return fr2v.reshape((ff.shape[0:-1]+rr.shape[:]))
Example #10
Source File: v1.py From terraform-templates with Apache License 2.0 | 6 votes |
def _wall_time(x): from functools import wraps from timeit import default_timer @wraps(x) def wrapper(self, *args, **kwargs): start = default_timer() r = x(self, *args, **kwargs) end = default_timer() secs = end-start r.wall_time = secs time_str = 'wall time %.2f seconds' % secs if logging.getLogger(__name__).getEffectiveLevel() == DEBUG1: self._log(DEBUG1, '%s() %s' % (x.__name__, time_str)) elif (logging.getLogger(__name__).getEffectiveLevel() in [DEBUG2, DEBUG3]): self._log(DEBUG2, '%s(%s, %s) %s' % (x.__name__, args, kwargs, time_str)) return r return wrapper
Example #11
Source File: parametric_GP.py From ParametricGP with MIT License | 6 votes |
def train(self): print("Total number of parameters: %d" % (self.hyp.shape[0])) X_tf = tf.placeholder(tf.float64) y_tf = tf.placeholder(tf.float64) hyp_tf = tf.Variable(self.hyp, dtype=tf.float64) train = self.likelihood(hyp_tf, X_tf, y_tf) init = tf.global_variables_initializer() self.sess.run(init) start_time = timeit.default_timer() for i in range(1,self.max_iter+1): # Fetch minibatch X_batch, y_batch = fetch_minibatch(self.X,self.y,self.N_batch) self.sess.run(train, {X_tf:X_batch, y_tf:y_batch}) if i % self.monitor_likelihood == 0: elapsed = timeit.default_timer() - start_time nlml = self.sess.run(self.nlml) print('Iteration: %d, NLML: %.2f, Time: %.2f' % (i, nlml, elapsed)) start_time = timeit.default_timer() self.hyp = self.sess.run(hyp_tf)
Example #12
Source File: m_rf0_den.py From pyscf with Apache License 2.0 | 6 votes |
def rf0_cmplx_ref(self, ww): """ Full matrix response in the basis of atom-centered product functions """ rf0 = np.zeros((len(ww), self.nprod, self.nprod), dtype=self.dtypeComplex) v = self.pb.get_ac_vertex_array() t1 = timer() if self.verbosity>1: print(__name__, 'self.ksn2e', self.ksn2e, len(ww)) zvxx_a = zeros((len(ww), self.nprod), dtype=self.dtypeComplex) for s in range(self.nspin): n2e = self.ksn2e[0,s,:] n2f = self.ksn2f[0,s,:] n2x = self.x[s,:,:] for en,fn,xn in zip(n2e,n2f,n2x): vx = dot(v, xn) for em,fm,xm in zip(n2e,n2f,n2x): vxx_a = dot(vx, xm.T) for iw,comega in enumerate(ww): zvxx_a[iw,:] = vxx_a * (fn - fm)/ (comega - (em - en)) rf0 += einsum('wa,b->wab', zvxx_a, vxx_a) t2 = timer() if self.verbosity>0: print(__name__, 'rf0_ref_loop', t2-t1) return rf0
Example #13
Source File: parametric_GP.py From ParametricGP with MIT License | 6 votes |
def train(self): print("Total number of parameters: %d" % (self.hyp.shape[0])) # Gradients from autograd NLML = value_and_grad(self.likelihood) start_time = timeit.default_timer() for i in range(1,self.max_iter+1): # Fetch minibatch self.X_batch, self.y_batch = fetch_minibatch(self.X,self.y,self.N_batch) # Compute likelihood and gradients nlml, D_NLML = NLML(self.hyp) # Update hyper-parameters self.hyp, self.mt_hyp, self.vt_hyp = stochastic_update_Adam(self.hyp, D_NLML, self.mt_hyp, self.vt_hyp, self.lrate, i) if i % self.monitor_likelihood == 0: elapsed = timeit.default_timer() - start_time print('Iteration: %d, NLML: %.2f, Time: %.2f' % (i, nlml, elapsed)) start_time = timeit.default_timer() nlml, D_NLML = NLML(self.hyp)
Example #14
Source File: test_0202_log_interp_vv.py From pyscf with Apache License 2.0 | 6 votes |
def test_log_interp_vv_speed(self): """ Test the interpolation facility for an array arguments from the class log_interp_c """ rr,pp = funct_log_mesh(1024, 0.01, 200.0) lgi = log_interp_c(rr) gcs = np.array([1.2030, 3.2030, 0.7, 10.0, 5.3]) ff = np.array([[np.exp(-gc*r**2) for r in rr] for gc in gcs]) rr = np.linspace(0.05, 250.0, 2000000) t1 = timer() fr2yy = lgi.interp_rcut(ff, rr, rcut=16.0) t2 = timer() #print(__name__, 't2-t1: ', t2-t1) yyref = np.exp(-(gcs.reshape(gcs.size,1)) * (rr.reshape(1,rr.size)**2)) self.assertTrue(np.allclose(fr2yy, yyref) )
Example #15
Source File: test_0031_rsh_vec.py From pyscf with Apache License 2.0 | 6 votes |
def test_rsh_vec(self): """ Compute real spherical harmonics via a vectorized algorithm """ from pyscf.nao.m_rsphar_libnao import rsphar_exp_vec as rsphar_exp_vec_libnao from pyscf.nao.m_rsphar_vec import rsphar_vec as rsphar_vec_python from timeit import default_timer as timer ll = [0,1,2,3,4] crds = np.random.rand(20000, 3) for lmax in ll: t1 = timer() rsh1 = rsphar_exp_vec_libnao(crds.T, lmax) t2 = timer(); tpython = (t2-t1); t1 = timer() rsh2 = rsphar_vec_libnao(crds, lmax) t2 = timer(); tlibnao = (t2-t1); t1 = timer() #print( abs(rsh1.T-rsh2).sum(), tpython, tlibnao) # print( rsh1[1,:]) # print( rsh2[1,:])
Example #16
Source File: test_0203_log_interp_speed_ram.py From pyscf with Apache License 2.0 | 6 votes |
def test_log_interp_vv_speed_and_space(self): """ Test the interpolation facility for an array arguments from the class log_interp_c """ rr,pp = funct_log_mesh(1024, 0.01, 200.0) lgi = log_interp_c(rr) gcs = np.array([1.2030, 3.2030, 0.7, 10.0, 5.3]) ff = np.array([[np.exp(-gc*r**2) for r in rr] for gc in gcs]) rrs = np.linspace(0.05, 250.0, 2000000) t1 = timer() fr2yy1 = lgi.interp_csr(ff, rrs, rcut=16.0) t2 = timer() #print(__name__, 't1: ', t2-t1) #print(fr2yy1.shape, fr2yy1.size) yyref = np.exp(-(gcs.reshape(gcs.size,1)) * (rrs.reshape(1,rrs.size)**2)) self.assertTrue(np.allclose(fr2yy1.toarray(), yyref) )
Example #17
Source File: test_0205_matelem_ram.py From pyscf with Apache License 2.0 | 6 votes |
def test_matelem_speed(self): """ Test the computation of atomic orbitals in coordinate space """ dname = os.path.dirname(os.path.abspath(__file__)) mf = mf_c(verbosity=0, label='water', cd=dname, gen_pb=False, force_gamma=True, Ecut=50) g = mf.mesh3d.get_3dgrid() t0 = timer() vna = mf.vna(g.coords) t1 = timer() ab2v1 = mf.matelem_int3d_coo(g, vna) t2 = timer() ab2v2 = mf.matelem_int3d_coo_ref(g, vna) t3 = timer() #print(__name__, 't1 t2: ', t1-t0, t2-t1, t3-t2) #print(abs(ab2v1.toarray()-ab2v2.toarray()).sum()/ab2v2.size, (abs(ab2v1.toarray()-ab2v2.toarray()).max())) self.assertTrue(np.allclose(ab2v1.toarray(), ab2v2.toarray()))
Example #18
Source File: test_0204_ao_eval_speed.py From pyscf with Apache License 2.0 | 6 votes |
def test_ao_eval_speed(self): """ Test the computation of atomic orbitals in coordinate space """ dname = os.path.dirname(os.path.abspath(__file__)) mf = mf_c(verbosity=0, label='water', cd=dname, gen_pb=False, force_gamma=True, Ecut=20) g = mf.mesh3d.get_3dgrid() t0 = timer() oc2v1 = mf.comp_aos_den(g.coords) t1 = timer() oc2v2 = mf.comp_aos_py(g.coords) t2 = timer() print(__name__, 't1 t2: ', t1-t0, t2-t1) print(abs(oc2v1-oc2v2).sum()/oc2v2.size, (abs(oc2v1-oc2v2).max())) self.assertTrue(np.allclose(oc2v1, oc2v2, atol=3.5e-5))
Example #19
Source File: test_0078_vhartree_pbc_water.py From pyscf with Apache License 2.0 | 6 votes |
def test_0078_vhartree_pbc_water(self): """ Test Hartree potential on equidistant grid with Periodic Boundary Conditions """ import os dname = os.path.dirname(os.path.abspath(__file__)) mf = mf_c(label='water', cd=dname, gen_pb=False, Ecut=100.0) d = abs(np.dot(mf.ucell_mom(), mf.ucell)-(2*np.pi)*np.eye(3)).sum() self.assertTrue(d<1e-15) g = mf.mesh3d.get_3dgrid() dens = mf.dens_elec(g.coords, mf.make_rdm1()).reshape(mf.mesh3d.shape) ts = timer() vh = mf.vhartree_pbc(dens) tf = timer() #print(__name__, tf-ts) E_Hartree = 0.5*(vh*dens*g.weights).sum()*HARTREE2EV self.assertAlmostEqual(E_Hartree, 382.8718239023864) # siesta: Hartree = 382.890331
Example #20
Source File: prod_basis.py From pyscf with Apache License 2.0 | 6 votes |
def init_prod_basis_pp(self, sv, **kvargs): """ Talman's procedure should be working well with Pseudo-Potential starting point.""" from pyscf.nao.m_prod_biloc import prod_biloc_c #t1 = timer() self.init_inp_param_prod_log_dp(sv, **kvargs) data = self.chain_data() libnao.init_vrtx_cc_apair(data.ctypes.data_as(POINTER(c_double)), c_int64(len(data))) self.sv_pbloc_data = True #t2 = timer(); print(t2-t1); t1=timer(); self.bp2info = [] # going to be some information including indices of atoms, list of contributing centres, conversion coefficients for ia1 in range(sv.natoms): rc1 = sv.ao_log.sp2rcut[sv.atom2sp[ia1]] for ia2 in range(ia1+1,sv.natoms): rc2,dist = sv.ao_log.sp2rcut[sv.atom2sp[ia2]], sqrt(((sv.atom2coord[ia1]-sv.atom2coord[ia2])**2).sum()) if dist>rc1+rc2 : continue pbiloc = self.comp_apair_pp_libint(ia1,ia2) if pbiloc is not None : self.bp2info.append(pbiloc) self.dpc2s,self.dpc2t,self.dpc2sp = self.init_c2s_domiprod() # dominant product's counting self.npdp = self.dpc2s[-1] self.norbs = self.sv.norbs return self
Example #21
Source File: utils.py From spectacles with MIT License | 6 votes |
def log_duration(fn: Callable): functools.wraps(fn) def timed_function(*args, **kwargs): start_time = timeit.default_timer() try: result = fn(*args, **kwargs) finally: elapsed = timeit.default_timer() - start_time elapsed_str = human_readable(elapsed) message_detail = get_detail(fn.__name__) logger.info(f"Completed {message_detail}validation in {elapsed_str}.\n") return result return timed_function
Example #22
Source File: test_framework.py From python-test-framework with MIT License | 6 votes |
def _timed_block_factory(opening_text): from timeit import default_timer as timer from traceback import format_exception from sys import exc_info def _timed_block_decorator(s, before=None, after=None): display(opening_text, s) def wrapper(func): if callable(before): before() time = timer() try: func() except AssertionError as e: display('FAILED', str(e)) except Exception: fail('Unexpected exception raised') tb_str = ''.join(format_exception(*exc_info())) display('ERROR', tb_str) display('COMPLETEDIN', '{:.2f}'.format((timer() - time) * 1000)) if callable(after): after() return wrapper return _timed_block_decorator
Example #23
Source File: trade.py From ConvLab with MIT License | 6 votes |
def test_update(): # lower case, tokenized. os.environ['CUDA_VISIBLE_DEVICES'] = '0' trade_tracker = TRADETracker() trade_tracker.init_session() trade_tracker.state['history'] = [ ['null', 'i am trying to find an restaurant in the center'], ['the cambridge chop is an good restaurant'] ] from timeit import default_timer as timer start = timer() pprint(trade_tracker.update('what is the area ?')) end = timer() print(end - start) start = timer() pprint(trade_tracker.update('what is the area ')) end = timer() print(end - start)
Example #24
Source File: v1_validation.py From Attentive-Filtering-Network with MIT License | 6 votes |
def best_eer(true_labels, predictions): def f_neg(threshold): ## Scipy tries to minimize the function return compute_eer(true_labels, predictions >= threshold) # Initialization of best threshold search thr_0 = [0.20] * 1 # binary class constraints = [(0.,1.)] * 1 # binary class def bounds(**kwargs): x = kwargs["x_new"] tmax = bool(np.all(x <= 1)) tmin = bool(np.all(x >= 0)) return tmax and tmin # Search using L-BFGS-B, the epsilon step must be big otherwise there is no gradient minimizer_kwargs = {"method": "L-BFGS-B", "bounds":constraints, "options":{ "eps": 0.05 } } # We combine L-BFGS-B with Basinhopping for stochastic search with random steps logger.info("===> Searching optimal threshold for each label") start_time = timer() opt_output = basinhopping(f_neg, thr_0, stepsize = 0.1, minimizer_kwargs=minimizer_kwargs, niter=10, accept_test=bounds) end_time = timer() logger.info("===> Optimal threshold for each label:\n{}".format(opt_output.x)) logger.info("Threshold found in: %s seconds" % (end_time - start_time)) score = opt_output.fun return score, opt_output.x
Example #25
Source File: steppertest.py From rpi-film-capture with MIT License | 5 votes |
def start_photo(self): ttimes=self.triggertimes ptimes=self.phototimes trig=self.triggertime qlen=self.qlen headroom=self.smart_headroom/100.0 start=timer() if trig: ttimes.appendleft(start-trig) self.triggertime = start #if we have a full set of intervals, calculate average and adjust motor if len(ttimes) == qlen and len(ptimes) == qlen: tavg=sum(ttimes)/qlen pavg=sum(ptimes)/qlen avgGap=tavg-pavg lastGap=ttimes[0]-ptimes[0] neededGap=tavg*headroom diff=avgGap-neededGap diffpct=diff/headroom #this how far off the headroom we are, as a fraction of that headroom logging.debug(str(tavg)+" "+str(pavg)+" "+str(lastGap)+" "+str(diffpct)) if lastGap<neededGap*.8 or diffpct<-.1: logging.debug("Way Fast") self.motor_set_speed(self.speed-7) #if the last frame or avg is way off elif lastGap<neededGap*.9 or diffpct<0: logging.debug("Fast") self.motor_set_speed(self.speed-1) #if we're just barely under required gap elif diffpct>.5: #if we're well over, speed up aggressively logging.debug("Way Slow") self.motor_set_speed(self.speed+2) elif diffpct>.2: #if we're close, tweak it logging.debug("Slow") self.motor_set_speed(self.speed+1)
Example #26
Source File: util.py From misp42splunk with GNU Lesser General Public License v3.0 | 5 votes |
def __getitem__(self, key): item = dict.__getitem__(self, key) item.timestamp = timeit.default_timer() return item.value
Example #27
Source File: prepare_segmented_dataset_swbd.py From pase with MIT License | 5 votes |
def copy_folder(in_folder, out_folder): if not os.path.isdir(out_folder): print('Replicating dataset structure...') beg_t = timer() shutil.copytree(in_folder, out_folder, ignore=ig_f) end_t = timer() print('Replicated structure in {:.1f} s'.format(end_t - beg_t))
Example #28
Source File: prepare_segmented_dataset_ami.py From pase with MIT License | 5 votes |
def copy_folder(in_folder, out_folder): if not os.path.isdir(out_folder): print('Replicating dataset structure...') beg_t = timer() shutil.copytree(in_folder, out_folder, ignore=ig_f) end_t = timer() print('Replicated structure in {:.1f} s'.format(end_t - beg_t))
Example #29
Source File: knn.py From pase with MIT License | 5 votes |
def main(opts): # find npy files in data dir with open(opts.data_cfg, 'r') as cfg_f: # contains train and test files cfg = json.load(cfg_f) train_X, train_Y, spk2idx = load_train_files(opts.data_root, cfg, 'train') test_X, test_Y = load_test_files(opts.data_root, cfg) print('Loaded trainX: ', train_X.shape) print('Loaded trainY: ', train_Y.shape) neigh = KNeighborsClassifier(n_neighbors=opts.k, n_jobs=opts.n_jobs) neigh.fit(train_X, train_Y) accs = [] timings = [] beg_t = timeit.default_timer() for te_idx in range(len(test_X)): test_x = test_X[te_idx] facc = [] preds = [0.] * len(spk2idx) Y_ = neigh.predict(test_x) for ii in range(len(Y_)): preds[Y_[ii]] += 1 y_ = np.argmax(preds, axis=0) y = test_Y[te_idx] if y_ == y: accs.append(1) else: accs.append(0.) end_t = timeit.default_timer() timings.append(end_t - beg_t) beg_t = timeit.default_timer() print('Processing test utterance {}/{}, muttime: {:.3f} s' ''.format(te_idx + 1, len(test_X), np.mean(timings))) print('Score on {} samples: {}'.format(len(accs), np.mean(accs))) with open(opts.out_log, 'w') as out_f: out_f.write('{:.4f}'.format(np.asscalar(np.mean(accs))))
Example #30
Source File: random_fire_generator.py From fire with Apache License 2.0 | 5 votes |
def generate_random_fires(fire_schemas, n=100): """ Given a list of fire product schemas (account, loan, derivative_cash_flow, security), generate random data and associated random relations (customer, issuer, collateral, etc.) TODO: add config to set number of products, min/max for dates etc. TODO: add relations """ batches = [] start_time = timeit.default_timer() for fire_schema in fire_schemas: f = open(fire_schema, "r") schema = json.load(f) data_type = fire_schema.split("/")[-1].split(".json")[0] data = generate_product_fire(schema, data_type, n) batches.append(data) end_time = timeit.default_timer() - start_time logging.warn( "Generating FIRE batches and writing to files" " took {} seconds".format(end_time) ) # logging.warn(batches) return batches