Python pylab.colorbar() Examples
The following are 23
code examples of pylab.colorbar().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
pylab
, or try the search function
.
Example #1
Source File: View.py From Deep-Spying with Apache License 2.0 | 9 votes |
def plot_confusion_matrix(self, matrix, labels): if not self.to_save and not self.to_show: return pylab.figure() pylab.imshow(matrix, interpolation='nearest', cmap=pylab.cm.jet) pylab.title("Confusion Matrix") for i, vi in enumerate(matrix): for j, vj in enumerate(vi): pylab.annotate("%.1f" % vj, xy=(j, i), horizontalalignment='center', verticalalignment='center', fontsize=9) pylab.colorbar() classes = np.arange(len(labels)) pylab.xticks(classes, labels) pylab.yticks(classes, labels) pylab.ylabel('Expected label') pylab.xlabel('Predicted label')
Example #2
Source File: plot.py From TOPFARM with GNU Affero General Public License v3.0 | 7 votes |
def plot_wt_layout(wt_layout, borders=None, depth=None): fig = plt.figure(figsize=(6,6), dpi=2000) fs = 14 ax = plt.subplot(111) if depth is not None: N = 100 X, Y = plt.meshgrid(plt.linspace(depth[:,0].min(), depth[:,0].max(), N), plt.linspace(depth[:,1].min(), depth[:,1].max(), N)) Z = plt.griddata(depth[:,0],depth[:,1],depth[:,2],X,Y, interp='linear') plt.contourf(X,Y,Z, label='depth [m]') plt.colorbar().set_label('water depth [m]') #ax.plot(wt_layout.wt_positions[:,0], wt_layout.wt_positions[:,1], 'or', label='baseline position') ax.scatter(wt_layout.wt_positions[:,0], wt_layout.wt_positions[:,1], wt_layout._wt_list('rotor_diameter'), label='baseline position') if borders is not None: ax.plot(borders[:,0], borders[:,1], 'r--', label='border') ax.set_xlabel('x [m]'); ax.set_ylabel('y [m]') ax.axis('equal'); ax.legend(loc='lower left')
Example #3
Source File: functional_map.py From cmm with GNU General Public License v2.0 | 6 votes |
def plot_functional_map(C, newfig=True): vmax = max(np.abs(C.max()), np.abs(C.min())) vmin = -vmax C = ((C - vmin) / (vmax - vmin)) * 2 - 1 if newfig: pl.figure(figsize=(5,5)) else: pl.clf() ax = pl.gca() pl.pcolor(C[::-1], edgecolor=(0.9, 0.9, 0.9, 1), lw=0.5, vmin=-1, vmax=1, cmap=nice_mpl_color_map()) # colorbar tick_locs = [-1., 0.0, 1.0] tick_labels = ['min', 0, 'max'] bar = pl.colorbar() bar.locator = matplotlib.ticker.FixedLocator(tick_locs) bar.formatter = matplotlib.ticker.FixedFormatter(tick_labels) bar.update_ticks() ax.set_aspect(1) pl.xticks([]) pl.yticks([]) if newfig: pl.show()
Example #4
Source File: plotting.py From smallrnaseq with GNU General Public License v3.0 | 6 votes |
def heatmap(df,fname=None,cmap='seismic',log=False): """Plot a heat map""" from matplotlib.colors import LogNorm f=plt.figure(figsize=(8,8)) ax=f.add_subplot(111) norm=None df=df.replace(0,.1) if log==True: norm=LogNorm(vmin=df.min().min(), vmax=df.max().max()) hm = ax.pcolor(df,cmap=cmap,norm=norm) plt.colorbar(hm,ax=ax,shrink=0.6,norm=norm) plt.yticks(np.arange(0.5, len(df.index), 1), df.index) plt.xticks(np.arange(0.5, len(df.columns), 1), df.columns, rotation=90) #ax.axvline(4, color='gray'); ax.axvline(8, color='gray') plt.tight_layout() if fname != None: f.savefig(fname+'.png') return ax
Example #5
Source File: TensorFlowInterface.py From IntroToDeepLearning with MIT License | 5 votes |
def plotOutput(layer,feed_dict,fieldShape=None,channel=None,figOffset=1,cmap=None): # Output summary try: W = layer.output except: W = layer wp = W.eval(feed_dict=feed_dict); if len(np.shape(wp)) < 4: # Fully connected layer, has no shape temp = np.zeros(np.product(fieldShape)); temp[0:np.shape(wp.ravel())[0]] = wp.ravel() fields = np.reshape(temp,[1]+fieldShape) else: # Convolutional layer already has shape wp = np.rollaxis(wp,3,0) features, channels, iy,ix = np.shape(wp) if channel is not None: fields = wp[:,channel,:,:] else: fields = np.reshape(wp,[features*channels,iy,ix]) perRow = int(math.floor(math.sqrt(fields.shape[0]))) perColumn = int(math.ceil(fields.shape[0]/float(perRow))) fields2 = np.vstack([fields,np.zeros([perRow*perColumn-fields.shape[0]] + list(fields.shape[1:]))]) tiled = [] for i in range(0,perColumn*perRow,perColumn): tiled.append(np.hstack(fields2[i:i+perColumn])) tiled = np.vstack(tiled) if figOffset is not None: mpl.figure(figOffset); mpl.clf(); mpl.imshow(tiled,cmap=cmap); mpl.title('%s Output' % layer.name); mpl.colorbar();
Example #6
Source File: iris_recognition.py From GmdhPy with MIT License | 5 votes |
def plot_confusion_matrix(cm, title='Confusion matrix', cmap=plt.cm.Blues): plt.imshow(cm, interpolation='nearest', cmap=cmap) plt.title(title) plt.colorbar() tick_marks = np.arange(len(iris.target_names)) plt.xticks(tick_marks, iris.target_names, rotation=45) plt.yticks(tick_marks, iris.target_names) plt.tight_layout() plt.ylabel('True label') plt.xlabel('Predicted label')
Example #7
Source File: util.py From satimage with MIT License | 5 votes |
def nice_imshow(ax, data, vmin=None, vmax=None, cmap=None): """Wrapper around pl.imshow""" if cmap is None: cmap = cm.jet if vmin is None: vmin = data.min() if vmax is None: vmax = data.max() divider = make_axes_locatable(ax) cax = divider.append_axes("right", size="5%", pad=0.05) im = ax.imshow(data, vmin=vmin, vmax=vmax, interpolation='nearest', cmap=cmap) pl.colorbar(im, cax=cax)
Example #8
Source File: plot_kl_analysis.py From SelfTarget with MIT License | 5 votes |
def plotHeatMap(data, col='KL without null', label=''): #Compute and collate medians sel_cols = [x for x in data.columns if col in x] cmp_meds = data[sel_cols].median(axis=0) samples = sortSampleNames(getUniqueSamples(sel_cols)) cell_lines = ['CHO', 'E14TG2A', 'BOB','RPE1', 'HAP1','K562','eCAS9','TREX2'] sample_idxs = [(cell_lines.index(parseSampleName(x)[0]),x) for x in getUniqueSamples(sel_cols)] sample_idxs.sort() samples = [x[1] for x in sample_idxs] N = len(samples) meds = np.zeros((N,N)) for colname in sel_cols: dir1, dir2 = getDirsFromFilename(colname.split('$')[-1]) idx1, idx2 = samples.index(dir1), samples.index(dir2) meds[idx1,idx2] = cmp_meds[colname] meds[idx2,idx1] = cmp_meds[colname] for i in range(N): print(' '.join(['%.2f' % x for x in meds[i,:]])) print( np.median(meds[:,:-4],axis=0)) #Display in Heatmap PL.figure(figsize=(5,5)) PL.imshow(meds, cmap='hot_r', vmin = 0.0, vmax = 3.0, interpolation='nearest') PL.colorbar() PL.xticks(range(N)) PL.yticks(range(N)) PL.title("Median KL") # between %d mutational profiles (for %s with >%d mutated reads)" % (col, len(data), label, MIN_READS)) ax1 = PL.gca() ax1.set_yticklabels([getSimpleName(x) for x in samples], rotation='horizontal') ax1.set_xticklabels([getSimpleName(x) for x in samples], rotation='vertical') PL.subplots_adjust(left=0.25,right=0.95,top=0.95, bottom=0.25) PL.show(block=False) saveFig('median_kl_heatmap_cell_lines')
Example #9
Source File: fc.py From SAMRI with GNU General Public License v3.0 | 5 votes |
def dendogram(correlation_matrix, save_as = '', figsize=(50,50), ): correlation_matrix = path.abspath(path.expanduser(correlation_matrix)) y = hier_clustering(correlation_matrix, method='centroid') z = hier_clustering(y, orientation='right') fig = pylab.figure(figsize=figsize) ax_1 = fig.add_axes([0.1,0.1,0.2,0.8]) ax_1.set_xticks([]) ax_1.set_yticks([]) ax_2 = fig.add_axes([0.3,0.1,0.6,0.8]) index = z['leaves'] correlation_matrix = correlation_matrix[index,:] correlation_matrix = correlation_matrix[:,index] im = ax_2.matshow(correlation_matrix, aspect='auto', origin='lower') ax_2.set_xticks([]) ax_2.set_yticks([]) ax_color = fig.add_axes([0.91,0.1,0.02,0.8]) colorbar = pylab.colorbar(im, cax=ax_color) colorbar.ax.tick_params(labelsize=75) # Display and save figure. if(save_as): fig.savefig(path.abspath(path.expanduser(save_as)))
Example #10
Source File: multiclass_logistic_regression.py From python-online-machine-learning-library with BSD 3-Clause "New" or "Revised" License | 5 votes |
def examplify(cls, fname): """ example of how to use """ logger.info("examplify starts") # model model = MultiClassLogisticRegression(epsilon=0.01, n_scan = 100) # learn st = time.time() model.learn(fname) et = time.time() print "learning time: %d [s]" % ((et - st)/1000) # predict y_pred = model.predict(fname) # confusion matrix y_label = np.loadtxt(fname, delimiter=" ")[:, 0] cm = confusion_matrix(y_label, y_pred) #pl.matshow(cm) #pl.title('Confusion matrix') #pl.colorbar() #pl.ylabel('True label') #pl.xlabel('Predicted label') #pl.show() print cm print "accurary: %d [%%]" % (np.sum(cm.diagonal()) * 100.0/np.sum(cm)) logger.info("examplify finished")
Example #11
Source File: spectrogram.py From spectrum with BSD 3-Clause "New" or "Revised" License | 5 votes |
def plot(self, filename=None, vmin=None, vmax=None, cmap='jet_r'): import pylab pylab.clf() pylab.imshow(-np.log10(self.results[self._start_y:,:]), origin="lower", aspect="auto", cmap=cmap, vmin=vmin, vmax=vmax) pylab.colorbar() # Fix xticks XMAX = float(self.results.shape[1]) # The max integer on xaxis xpos = list(range(0, int(XMAX), int(XMAX/5))) xx = [int(this*100)/100 for this in np.array(xpos) / XMAX * self.duration] pylab.xticks(xpos, xx, fontsize=16) # Fix yticks YMAX = float(self.results.shape[0]) # The max integer on xaxis ypos = list(range(0, int(YMAX), int(YMAX/5))) yy = [int(this) for this in np.array(ypos) / YMAX * self.sampling] pylab.yticks(ypos, yy, fontsize=16) #pylab.yticks([1000,2000,3000,4000], [5500,11000,16500,22000], fontsize=16) #pylab.title("%s echoes" % filename.replace(".png", ""), fontsize=25) pylab.xlabel("Time (seconds)", fontsize=25) pylab.ylabel("Frequence (Hz)", fontsize=25) pylab.tight_layout() if filename: pylab.savefig(filename)
Example #12
Source File: tutorial.py From TOPFARM with GNU Affero General Public License v3.0 | 5 votes |
def contour_plot(func): rose = func() XS, YS = plt.meshgrid(np.linspace(-2, 2, 20), np.linspace(-2,2, 20)); ZS = np.array([rose(x1=x, x2=y).f_xy for x,y in zip(XS.flatten(),YS.flatten())]).reshape(XS.shape); plt.contourf(XS, YS, ZS, 50); plt.colorbar()
Example #13
Source File: TensorFlowInterface.py From IntroToDeepLearning with MIT License | 5 votes |
def plotOutput(layer,feed_dict,fieldShape=None,channel=None,figOffset=1,cmap=None): # Output summary W = layer.output wp = W.eval(feed_dict=feed_dict); if len(np.shape(wp)) < 4: # Fully connected layer, has no shape temp = np.zeros(np.product(fieldShape)); temp[0:np.shape(wp.ravel())[0]] = wp.ravel() fields = np.reshape(temp,[1]+fieldShape) else: # Convolutional layer already has shape wp = np.rollaxis(wp,3,0) features, channels, iy,ix = np.shape(wp) if channel is not None: fields = wp[:,channel,:,:] else: fields = np.reshape(wp,[features*channels,iy,ix]) perRow = int(math.floor(math.sqrt(fields.shape[0]))) perColumn = int(math.ceil(fields.shape[0]/float(perRow))) fields2 = np.vstack([fields,np.zeros([perRow*perColumn-fields.shape[0]] + list(fields.shape[1:]))]) tiled = [] for i in range(0,perColumn*perRow,perColumn): tiled.append(np.hstack(fields2[i:i+perColumn])) tiled = np.vstack(tiled) if figOffset is not None: mpl.figure(figOffset); mpl.clf(); mpl.imshow(tiled,cmap=cmap); mpl.title('%s Output' % layer.name); mpl.colorbar();
Example #14
Source File: TensorFlowInterface.py From IntroToDeepLearning with MIT License | 5 votes |
def plotFields(layer,fieldShape=None,channel=None,maxFields=25,figName='ReceptiveFields',cmap=None,padding=0.01): # Receptive Fields Summary W = layer.W wp = W.eval().transpose(); if len(np.shape(wp)) < 4: # Fully connected layer, has no shape fields = np.reshape(wp,list(wp.shape[0:-1])+fieldShape) else: # Convolutional layer already has shape features, channels, iy, ix = np.shape(wp) if channel is not None: fields = wp[:,channel,:,:] else: fields = np.reshape(wp,[features*channels,iy,ix]) fieldsN = min(fields.shape[0],maxFields) perRow = int(math.floor(math.sqrt(fieldsN))) perColumn = int(math.ceil(fieldsN/float(perRow))) fig = mpl.figure(figName); mpl.clf() # Using image grid from mpl_toolkits.axes_grid1 import ImageGrid grid = ImageGrid(fig,111,nrows_ncols=(perRow,perColumn),axes_pad=padding,cbar_mode='single') for i in range(0,fieldsN): im = grid[i].imshow(fields[i],cmap=cmap); grid.cbar_axes[0].colorbar(im) mpl.title('%s Receptive Fields' % layer.name) # old way # fields2 = np.vstack([fields,np.zeros([perRow*perColumn-fields.shape[0]] + list(fields.shape[1:]))]) # tiled = [] # for i in range(0,perColumn*perRow,perColumn): # tiled.append(np.hstack(fields2[i:i+perColumn])) # # tiled = np.vstack(tiled) # mpl.figure(figOffset); mpl.clf(); mpl.imshow(tiled,cmap=cmap); mpl.title('%s Receptive Fields' % layer.name); mpl.colorbar(); mpl.figure(figName+' Total'); mpl.clf(); mpl.imshow(np.sum(np.abs(fields),0),cmap=cmap); mpl.title('%s Total Absolute Input Dependency' % layer.name); mpl.colorbar()
Example #15
Source File: TensorFlowInterface.py From IntroToDeepLearning with MIT License | 5 votes |
def plotFields(layer,fieldShape=None,channel=None,figOffset=1,cmap=None,padding=0.01): # Receptive Fields Summary try: W = layer.W except: W = layer wp = W.eval().transpose(); if len(np.shape(wp)) < 4: # Fully connected layer, has no shape fields = np.reshape(wp,list(wp.shape[0:-1])+fieldShape) else: # Convolutional layer already has shape features, channels, iy, ix = np.shape(wp) if channel is not None: fields = wp[:,channel,:,:] else: fields = np.reshape(wp,[features*channels,iy,ix]) perRow = int(math.floor(math.sqrt(fields.shape[0]))) perColumn = int(math.ceil(fields.shape[0]/float(perRow))) fig = mpl.figure(figOffset); mpl.clf() # Using image grid from mpl_toolkits.axes_grid1 import ImageGrid grid = ImageGrid(fig,111,nrows_ncols=(perRow,perColumn),axes_pad=padding,cbar_mode='single') for i in range(0,np.shape(fields)[0]): im = grid[i].imshow(fields[i],cmap=cmap); grid.cbar_axes[0].colorbar(im) mpl.title('%s Receptive Fields' % layer.name) # old way # fields2 = np.vstack([fields,np.zeros([perRow*perColumn-fields.shape[0]] + list(fields.shape[1:]))]) # tiled = [] # for i in range(0,perColumn*perRow,perColumn): # tiled.append(np.hstack(fields2[i:i+perColumn])) # # tiled = np.vstack(tiled) # mpl.figure(figOffset); mpl.clf(); mpl.imshow(tiled,cmap=cmap); mpl.title('%s Receptive Fields' % layer.name); mpl.colorbar(); mpl.figure(figOffset+1); mpl.clf(); mpl.imshow(np.sum(np.abs(fields),0),cmap=cmap); mpl.title('%s Total Absolute Input Dependency' % layer.name); mpl.colorbar()
Example #16
Source File: main.py From scTDA with GNU General Public License v3.0 | 4 votes |
def hierarchical_clustering(mat, method='average', cluster_distance=True, labels=None, thres=0.65): """ Performs hierarchical clustering based on distance matrix 'mat' using the method specified by 'method'. Optional argument 'labels' may specify a list of labels. If cluster_distance is True, the clustering is performed on the distance matrix using euclidean distance. Otherwise, mat specifies the distance matrix for clustering. Adapted from http://stackoverflow.com/questions/7664826/how-to-get-flat-clustering-corresponding-to-color-clusters-in-the-dendrogram-cre Not subjected to copyright. """ D = numpy.array(mat) if not cluster_distance: Dtriangle = scipy.spatial.distance.squareform(D) else: Dtriangle = scipy.spatial.distance.pdist(D, metric='euclidean') fig = pylab.figure(figsize=(8, 8)) ax1 = fig.add_axes([0.09, 0.1, 0.2, 0.6]) Y = sch.linkage(Dtriangle, method=method) Z1 = sch.dendrogram(Y, orientation='right', color_threshold=thres*max(Y[:, 2])) ax1.set_xticks([]) ax1.set_yticks([]) ax2 = fig.add_axes([0.3, 0.71, 0.6, 0.2]) Y = sch.linkage(Dtriangle, method=method) Z2 = sch.dendrogram(Y, color_threshold=thres*max(Y[:, 2])) ax2.set_xticks([]) ax2.set_yticks([]) axmatrix = fig.add_axes([0.3, 0.1, 0.6, 0.6]) idx1 = Z1['leaves'] idx2 = Z2['leaves'] D = D[idx1, :] D = D[:, idx2] im = axmatrix.matshow(D, aspect='auto', origin='lower', cmap=pylab.get_cmap('jet_r')) if labels is None: axmatrix.set_xticks([]) axmatrix.set_yticks([]) else: axmatrix.set_xticks(range(len(labels))) lab = [labels[idx1[m]] for m in range(len(labels))] axmatrix.set_xticklabels(lab) axmatrix.set_yticks(range(len(labels))) axmatrix.set_yticklabels(lab) for tick in pylab.gca().xaxis.iter_ticks(): tick[0].label2On = False tick[0].label1On = True tick[0].label1.set_rotation('vertical') for tick in pylab.gca().yaxis.iter_ticks(): tick[0].label2On = True tick[0].label1On = False axcolor = fig.add_axes([0.91, 0.1, 0.02, 0.6]) pylab.colorbar(im, cax=axcolor) pylab.show() return Z1
Example #17
Source File: hsi_utils.py From deeplearn_hsi with BSD 2-Clause "Simplified" License | 4 votes |
def result_analysis(prediction, train_truth, valid_truth, test_truth, verbose=False): assert prediction.shape == test_truth.shape print "Detailed information in each category:" print " Number of Samples" print "Class No. TRAIN VALID TEST RightCount RightRate" for i in xrange(test_truth.min(), test_truth.max()+1): right_prediction = ( (test_truth-prediction) == 0 ) right_count = numpy.sum(((test_truth==i) * right_prediction)*1) print "%d\t\t%d\t%d\t%d\t%d\t%f" % \ (i, numpy.sum((train_truth==i)*1), numpy.sum((valid_truth==i)*1), numpy.sum((test_truth==i)*1), right_count, right_count * 1.0 / numpy.sum((test_truth==i)*1) ) total_right_count = numpy.sum(right_prediction*1) print "Overall\t\t%d\t%d\t%d\t%d\t%f" % \ (train_truth.size, valid_truth.size, test_truth.size, total_right_count, total_right_count * 1.0 / test_truth.size ) cm = confusion_matrix(test_truth, prediction) pr_a = cm.trace()*1.0 / test_truth.size pr_e = ((cm.sum(axis=0)*1.0/test_truth.size) * \ (cm.sum(axis=1)*1.0/test_truth.size)).sum() k = (pr_a - pr_e) / (1 - pr_e) print "kappa index of agreement: %f" % k print "confusion matrix:" print cm # Show confusion matrix pl.matshow(cm) pl.title('Confusion matrix') pl.colorbar() if verbose: pl.show() else: filename = 'conf_mtx_' + str(time.time()) + '.png' pl.savefig(filename) #-------------------------------------------------------------------------------
Example #18
Source File: callbacks.py From GPPVAE with Apache License 2.0 | 4 votes |
def callback_gppvae0(epoch, history, covs, imgs, ffile): # init fig pl.figure(1, figsize=(8, 8)) pl.subplot(4, 4, 1) pl.title("loss") pl.plot(history["loss"]) pl.subplot(4, 4, 2) pl.title("vars") pl.plot(sp.array(history["vs"])[:, 0], "r") pl.plot(sp.array(history["vs"])[:, 1], "k") pl.subplot(4, 4, 5) pl.title("mse_out") pl.plot(history["mse_out"]) pl.subplot(4, 4, 9) pl.title("XX") pl.imshow(covs["XX"], vmin=-0.4, vmax=1) pl.colorbar() pl.subplot(4, 4, 10) pl.title("WW") pl.imshow(covs["WW"], vmin=-0.4, vmax=1) pl.colorbar() Yv, Rv = imgs["Yv"], imgs["Yo"] # make plot pl.subplot(4, 2, 2) _img = _compose(Yv[0:6], Rv[0:6]) pl.imshow(_img) pl.subplot(4, 2, 4) _img = _compose(Yv[6:12], Rv[6:12]) pl.imshow(_img) pl.subplot(4, 2, 6) _img = _compose(Yv[12:18], Rv[12:18]) pl.imshow(_img) pl.subplot(4, 2, 8) _img = _compose(Yv[18:24], Rv[18:24]) pl.imshow(_img) pl.savefig(ffile) pl.close()
Example #19
Source File: callbacks.py From GPPVAE with Apache License 2.0 | 4 votes |
def callback_gppvae(epoch, history, covs, imgs, ffile): # init fig pl.figure(1, figsize=(8, 8)) pl.subplot(4, 4, 1) pl.title("loss") pl.plot(history["loss"], "k") pl.subplot(4, 4, 2) pl.title("vars") pl.plot(sp.array(history["vs"])[:, 0], "r") pl.plot(sp.array(history["vs"])[:, 1], "k") pl.ylim(0, 1) pl.subplot(4, 4, 5) pl.title("recon_term") pl.plot(history["recon_term"], "k") pl.subplot(4, 4, 6) pl.title("gp_nll") pl.plot(history["gp_nll"], "k") pl.subplot(4, 4, 9) pl.title("mse_out") pl.plot(history["mse_out"], "k") pl.ylim(0, 0.1) pl.subplot(4, 4, 10) pl.title("mse") pl.plot(history["mse"], "k") pl.plot(history["mse_val"], "r") pl.ylim(0, 0.01) pl.subplot(4, 4, 13) pl.title("XX") pl.imshow(covs["XX"], vmin=-0.4, vmax=1) pl.colorbar() pl.subplot(4, 4, 14) pl.title("WW") pl.imshow(covs["WW"], vmin=-0.4, vmax=1) pl.colorbar() Yv, Yr, Rv = imgs["Yv"], imgs["Yr"], imgs["Yo"] # make plot pl.subplot(4, 2, 2) _img = _compose_multi([Yv[0:6], Yr[0:6], Rv[0:6]]) pl.imshow(_img) pl.subplot(4, 2, 4) _img = _compose_multi([Yv[6:12], Yr[6:12], Rv[6:12]]) pl.imshow(_img) pl.subplot(4, 2, 6) _img = _compose_multi([Yv[12:18], Yr[12:18], Rv[12:18]]) pl.imshow(_img) pl.subplot(4, 2, 8) _img = _compose_multi([Yv[18:24], Yr[18:24], Rv[18:24]]) pl.imshow(_img) pl.savefig(ffile) pl.close()
Example #20
Source File: gs.py From pyoptools with GNU General Public License v3.0 | 4 votes |
def gs_mod(idata,itera=10,osize=256): """Modiffied Gerchberg-Saxton algorithm to calculate DOEs Calculates the phase distribution in a object plane to obtain an specific amplitude distribution in the target plane. It uses a FFT to calculate the field propagation. The wavefront at the DOE plane is assumed as a plane wave. This algorithm leaves a window around the image plane to allow the noise to move there. It only optimises the center of the image. **ARGUMENTS:** ========== ====================================================== idata numpy array containing the target amplitude distribution itera Maximum number of iterations osize Size of the center of the image to be optimized It should be smaller than the image itself. ========== ====================================================== """ M,N=idata.shape cut=osize//2 zone=zeros_like(idata) zone[M/2-cut:M/2+cut,N/2-cut:N/2+cut]=1 zone=zone.astype(bool) mask=exp(2.j*pi*random(idata.shape)) mask[zone]=0 #~ imshow(abs(mask)),colorbar() fdata=fftshift(fft2(ifftshift(idata+mask))) #Nota, colocar esta mascara es muy importante, por que si no no converge tan rapido e=1000 ea=1000 for i in range (itera): fdata=exp(1.j*angle(fdata)) rdata=ifftshift(ifft2(fftshift(fdata))) #~ e= (abs(rdata[zone])-idata[zone]).std() #~ if e>ea: #~ #~ break ea=e rdata[zone]=exp(1.j*angle(rdata[zone]))*(idata[zone]) fdata=fftshift(fft2(ifftshift(rdata))) fdata=exp(1.j*angle(fdata)) return fdata
Example #21
Source File: plot.py From SelfTarget with MIT License | 4 votes |
def plotCorrelations(all_result_outputs, label='', data_label='', y_label='', plot_label='', plot_scatters=False, oligo_id_str='Oligo ID', val_str = 'Cut Rate', total_reads_str= 'Total Reads', scatter_samples={}, sdims=(0,0), scatter_fig=None, add_leg=True): datas = [x[0][data_label][0] for x in all_result_outputs] sample_names = [shortDirLabel(x[1]) for x in all_result_outputs] merged_data = pd.merge(datas[0],datas[1],how='inner',on=oligo_id_str, suffixes=['', ' 2']) for i, data in enumerate(datas[2:]): merged_data = pd.merge(merged_data, data,how='inner',on=oligo_id_str, suffixes=['', ' %d' % (i+3)]) suffix = lambda i: ' %d' % (i+1) if i > 0 else '' N = len(sample_names) if plot_scatters: if scatter_fig is None: PL.figure() else: PL.figure(scatter_fig.number) s_dims = (N,N) if len(scatter_samples) == 0 else sdims pcorrs, scorrs = np.zeros((N,N)), np.zeros((N,N)) for i,label1 in enumerate(sample_names): for j,label2 in enumerate(sample_names): dvs1, dvs2, ids = merged_data[val_str + suffix(i)], merged_data[val_str + suffix(j)], merged_data[oligo_id_str] pcorrs[i,j] = pearsonr(dvs1, dvs2)[0] scorrs[i,j] = spearmanr(dvs1, dvs2)[0] if plot_scatters: if (label1, label2) in scatter_samples: idx = scatter_samples[(label1, label2)] elif len(scatter_samples) == 0: idx = i*N+j+1 else: continue PL.subplot(s_dims[0],s_dims[1],idx) trs1, trs2 = merged_data[total_reads_str + suffix(i)], merged_data[total_reads_str + suffix(j)] for thr in [20,50,100,500,1000]: thr_dvs = [(dv1, dv2,id) for (dv1, dv2, tr1, tr2,id) in zip(dvs1,dvs2,trs1,trs2,ids) if (tr1 >= thr and tr2 >= thr) ] pcorrs[i,j] = pearsonr([x[0] for x in thr_dvs], [x[1] for x in thr_dvs])[0] PL.plot([x[0] for x in thr_dvs],[x[1] for x in thr_dvs],'.', label='>%d Reads' % thr) PL.plot([0,100],[0,100],'k--') PL.xlabel('K562 Replicate A') PL.ylabel('K562 Replicate B') if add_leg: PL.legend() PL.title('%s (%.2f)' % (y_label, pcorrs[i,j])) if plot_scatters: PL.subplots_adjust(left=0.05,right=0.95,top=0.9, bottom=0.1, hspace=0.4) PL.show(block=False) saveFig(plot_label) if not plot_scatters: PL.figure(figsize=(10,10)) #PL.subplot(1,2,1) PL.imshow(pcorrs, cmap='hot', vmin = 0.0, vmax = 1.0, interpolation='nearest') PL.xticks(range(N),sample_names, rotation='vertical') PL.yticks(range(N),sample_names) PL.title(y_label + ': Pearson') PL.colorbar() #PL.subplot(1,2,2) #PL.imshow(scorrs, cmap='hot', vmin = 0.0, vmax = 1.0, interpolation='nearest') #PL.xticks(range(N),sample_names, rotation='vertical') #PL.yticks(range(N),sample_names) #PL.title(y_label + ': Spearman') #PL.colorbar() PL.show(block=False) PL.savefig(getPlotDir() + '/%s_%s.png' % (plot_label, sanitizeLabel(label)), bbox_inches='tight')
Example #22
Source File: testing_utils.py From h2o4gpu with Apache License 2.0 | 4 votes |
def plot_glm_results(axis, results, best_rmse, cb): axis.cla() axis.set_xscale('log') axis.set_xlim([1e2, 1e9]) axis.set_ylim([-0.12, 1.12]) axis.set_yticks([x / 7. for x in range(0, 8)]) axis.set_ylabel('Parameter 1: ' + r'$\alpha$', fontsize=16) axis.set_xlabel('Parameter 2: ' + r'$\lambda$', fontsize=16) num_models = min(4000, int(4000 * results.shape[0] / 2570)) axis.set_title( 'Elastic Net Models Trained and Evaluated: ' + str(num_models), fontsize=16) try: import seaborn as sns sns.set_style("whitegrid") import pylab as pl from matplotlib.colors import ListedColormap cm = ListedColormap(sns.color_palette("RdYlGn", 10).as_hex()) cf = axis.scatter( results['lambda'], results['alpha_prime'], c=results['rel_acc'], cmap=cm, vmin=0, vmax=1, s=60, lw=0) axis.plot( best_rmse['lambda'], best_rmse['alpha_prime'], 'o', ms=15, mec='k', mfc='none', mew=2) if not cb: cb = pl.colorbar(cf, ax=axis) cb.set_label( 'Relative Validation Accuracy', rotation=270, labelpad=18, fontsize=16) cb.update_normal(cf) except: #print("plot_glm_results exception -- no frame") pass
Example #23
Source File: show.py From Det3D with Apache License 2.0 | 4 votes |
def visualize_feature_maps( X, anno=[], keypoints=[], axes=[2, 0], save_filename=None, divide=False ): nc = np.ceil(np.sqrt(X.shape[2])) # column nr = np.ceil(X.shape[2] / nc) # row nc = int(nc) nr = int(nr) plt.figure(figsize=(64, 64)) for i in range(X.shape[2]): ax = plt.subplot(nr, nc, i + 1) ax.imshow(X[:, :, i], cmap="jet") # plt.colorbar() for obj in anno: draw_box(ax, obj, axes=axes, color="r") # plot head orientation center_bottom_forward = np.mean(obj.T[[0, 1, 5, 4]], axis=0) center_bottom = np.mean(obj.T[[1, 2, 6, 5]], axis=0) ax.plot( [center_bottom[0], center_bottom_forward[0]], [center_bottom[1], center_bottom_forward[1]], c="y", lw=3, ) for pts_score in keypoints: pts = pts_score[:8] if divide: pts = pts / 8.0 for i in range(4): ax.plot(pts[2 * i + 1], pts[2 * i + 0], "r*") ax.plot([pts[1], pts[3]], [pts[0], pts[2]], c="y", lw=5) ax.plot([pts[3], pts[5]], [pts[2], pts[4]], c="g", lw=5) ax.plot([pts[5], pts[7]], [pts[4], pts[6]], c="b", lw=5) ax.plot([pts[7], pts[1]], [pts[6], pts[0]], c="r", lw=5) # ax.plot([pts[7], pts[7]+10*pts_score[11]], [pts[6], pts[6]+10*pts_score[12]], c='c', lw=2) # annotations = pts_score[13] # ax.annotate(str(annotations), xy=(pts[7]+10*pts_score[11], pts[6]+10*pts_score[12]), xytext=(pts[7]+10*pts_score[11], pts[6]+10*pts_score[12]), arrowprops=dict(facecolor='black', shrink=0.05),) ax.axis("off") if save_filename: plt.savefig(save_filename) else: plt.show() plt.close()