Python numpy.swapaxes() Examples
The following are 30
code examples of numpy.swapaxes().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example #1
Source File: test_numeric.py From recruit with Apache License 2.0 | 6 votes |
def setup(self): self.data = [ # Array scalars (np.array(3.), None), (np.array(3), 'f8'), # 1D arrays (np.arange(6, dtype='f4'), None), (np.arange(6), 'c16'), # 2D C-layout arrays (np.arange(6).reshape(2, 3), None), (np.arange(6).reshape(3, 2), 'i1'), # 2D F-layout arrays (np.arange(6).reshape((2, 3), order='F'), None), (np.arange(6).reshape((3, 2), order='F'), 'i1'), # 3D C-layout arrays (np.arange(24).reshape(2, 3, 4), None), (np.arange(24).reshape(4, 3, 2), 'f4'), # 3D F-layout arrays (np.arange(24).reshape((2, 3, 4), order='F'), None), (np.arange(24).reshape((4, 3, 2), order='F'), 'f4'), # 3D non-C/F-layout arrays (np.arange(24).reshape(2, 3, 4).swapaxes(0, 1), None), (np.arange(24).reshape(4, 3, 2).swapaxes(0, 1), '?'), ]
Example #2
Source File: basic.py From lambda-packs with MIT License | 6 votes |
def _raw_fft(x, n, axis, direction, overwrite_x, work_function): """ Internal auxiliary function for fft, ifft, rfft, irfft.""" if n is None: n = x.shape[axis] elif n != x.shape[axis]: x, copy_made = _fix_shape(x,n,axis) overwrite_x = overwrite_x or copy_made if n < 1: raise ValueError("Invalid number of FFT data points " "(%d) specified." % n) if axis == -1 or axis == len(x.shape)-1: r = work_function(x,n,direction,overwrite_x=overwrite_x) else: x = swapaxes(x, axis, -1) r = work_function(x,n,direction,overwrite_x=overwrite_x) r = swapaxes(r, axis, -1) return r
Example #3
Source File: nstyle.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 6 votes |
def PreprocessContentImage(path, long_edge): img = io.imread(path) logging.info("load the content image, size = %s", img.shape[:2]) factor = float(long_edge) / max(img.shape[:2]) new_size = (int(img.shape[0] * factor), int(img.shape[1] * factor)) resized_img = transform.resize(img, new_size) sample = np.asarray(resized_img) * 256 # swap axes to make image from (224, 224, 3) to (3, 224, 224) sample = np.swapaxes(sample, 0, 2) sample = np.swapaxes(sample, 1, 2) # sub mean sample[0, :] -= 123.68 sample[1, :] -= 116.779 sample[2, :] -= 103.939 logging.info("resize the content image to %s", new_size) return np.resize(sample, (1, 3, sample.shape[1], sample.shape[2]))
Example #4
Source File: image_segmentaion.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 6 votes |
def get_data(img_path): """get the (1, 3, h, w) np.array data for the supplied image Args: img_path (string): the input image path Returns: np.array: image data in a (1, 3, h, w) shape """ mean = np.array([123.68, 116.779, 103.939]) # (R,G,B) img = Image.open(img_path) img = np.array(img, dtype=np.float32) reshaped_mean = mean.reshape(1, 1, 3) img = img - reshaped_mean img = np.swapaxes(img, 0, 2) img = np.swapaxes(img, 1, 2) img = np.expand_dims(img, axis=0) return img
Example #5
Source File: stress_gui.py From fenics-topopt with MIT License | 6 votes |
def update(self, xPhys, u, title=None): """Plot to screen""" self.im.set_array(-xPhys.reshape((self.nelx, self.nely)).T) stress = self.stress_calculator.calculate_stress(xPhys, u, self.nu) # self.stress_calculator.calculate_fdiff_stress(xPhys, u, self.nu) self.myColorMap.set_norm(colors.Normalize(vmin=0, vmax=max(stress))) stress_rgba = self.myColorMap.to_rgba(stress) stress_rgba[:, :, 3] = xPhys.reshape(-1, 1) self.stress_im.set_array(np.swapaxes( stress_rgba.reshape((self.nelx, self.nely, 4)), 0, 1)) self.fig.canvas.draw() self.fig.canvas.flush_events() if title is not None: plt.title(title) else: plt.xlabel("Max stress = {:.2f}".format(max(stress)[0])) plt.pause(0.01)
Example #6
Source File: stress_gui.py From fenics-topopt with MIT License | 6 votes |
def update(self, xPhys, u, title=None): """Plot to screen""" self.im.set_array(-xPhys.reshape((self.nelx, self.nely)).T) stress = self.stress_calculator.calculate_stress(xPhys, u, self.nu) # self.stress_calculator.calculate_fdiff_stress(xPhys, u, self.nu) self.myColorMap.set_norm(colors.Normalize(vmin=0, vmax=max(stress))) stress_rgba = self.myColorMap.to_rgba(stress) stress_rgba[:, :, 3] = xPhys.reshape(-1, 1) self.stress_im.set_array(np.swapaxes( stress_rgba.reshape((self.nelx, self.nely, 4)), 0, 1)) self.fig.canvas.draw() self.fig.canvas.flush_events() if title is not None: plt.title(title) else: plt.xlabel("Max stress = {:.2f}".format(max(stress)[0])) plt.pause(0.01)
Example #7
Source File: mxnet_predict_example.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 6 votes |
def PreprocessImage(path, show_img=False): # load image img = io.imread(path) print("Original Image Shape: ", img.shape) # we crop image from center short_egde = min(img.shape[:2]) yy = int((img.shape[0] - short_egde) / 2) xx = int((img.shape[1] - short_egde) / 2) crop_img = img[yy : yy + short_egde, xx : xx + short_egde] # resize to 224, 224 resized_img = transform.resize(crop_img, (224, 224)) # convert to numpy.ndarray sample = np.asarray(resized_img) * 255 # swap axes to make image from (224, 224, 3) to (3, 224, 224) sample = np.swapaxes(sample, 0, 2) sample = np.swapaxes(sample, 1, 2) # sub mean return sample # Get preprocessed batch (single image batch)
Example #8
Source File: vgg_16_reduced.py From lambda-deep-learning-demo with Apache License 2.0 | 6 votes |
def vgg_mod(outputs, params, name, data_format, dilation=1): w = np.swapaxes(np.swapaxes(np.swapaxes(params[name][0], 0, 3), 1, 2), 0, 1) b = params[name][1] outputs = tf.layers.conv2d( outputs, filters=w.shape[3], kernel_size=(w.shape[0], w.shape[1]), strides=(1, 1), padding=("SAME"), data_format=data_format, dilation_rate=(dilation, dilation), kernel_initializer=tf.constant_initializer(w), bias_initializer=tf.constant_initializer(b), activation=tf.nn.relu, name=name) return outputs
Example #9
Source File: competition_model_class.py From Deep_Learning_Weather_Forecasting with Apache License 2.0 | 6 votes |
def linear_ensemble_strategy(self, pred_mean, pred_var, ruitu_inputs, feature_name,\ timestep_to_ensemble=21, alpha=1): ''' This stratergy aims to calculate linear weighted at specific timestep (timestep_to_ensemble) between prediction and ruitu as formula: (alpha)*pred_mean + (1-alpha)*ruitu_inputs pred_mean: (10, 37, 3) pred_var: (10, 37, 3) ruitu_inputs: (37,10,29). Need Swamp to(10,37,29) FIRSTLY!! timestep_to_ensemble: int32 (From 0 to 36) ''' assert 0<= alpha <=1, 'Please ensure 0<= alpha <=1 !' assert pred_mean.shape == (10, 37, 3), 'Error! This funtion ONLY works for \ one data sample with shape (10, 37, 3). Any data shape (None, 10, 37, 3) will leads this error!' #pred_std = np.sqrt(np.exp(pred_var)) ruitu_inputs = np.swapaxes(ruitu_inputs,0,1) print('alpha:',alpha) pred_mean[:,timestep_to_ensemble:,self.obs_and_output_feature_index_map[feature_name]] = \ (alpha)*pred_mean[:,timestep_to_ensemble:,self.obs_and_output_feature_index_map[feature_name]] + \ (1-alpha)*ruitu_inputs[:,timestep_to_ensemble:, self.ruitu_feature_index_map[feature_name]] print('Corrected pred_mean shape:', pred_mean.shape) return pred_mean
Example #10
Source File: vgg_16_reduced.py From lambda-deep-learning-demo with Apache License 2.0 | 6 votes |
def vgg_block(outputs, params, name, data_format, num_conv): for i in range(num_conv): layer_name = name + "_" + str(i + 1) w = np.swapaxes(np.swapaxes(np.swapaxes(params[layer_name][0], 0, 3), 1, 2), 0, 1) b = params[layer_name][1] outputs = tf.layers.conv2d( outputs, filters=w.shape[3], kernel_size=(w.shape[0], w.shape[1]), strides=(1, 1), padding=("SAME"), data_format=data_format, kernel_initializer=tf.constant_initializer(w), bias_initializer=tf.constant_initializer(b), activation=tf.nn.relu, name=layer_name) return outputs
Example #11
Source File: plotting.py From kvae with MIT License | 6 votes |
def plot_ball_and_alpha(alpha, trajectory, filename, cmap='Blues'): f, ax = plt.subplots(nrows=1, ncols=2, figsize=[12, 6]) collection = construct_ball_trajectory(trajectory, r=1., cmap=cmap) x_min, y_min = np.min(trajectory, axis=0) x_max, y_max = np.max(trajectory, axis=0) ax[0].add_collection(collection) ax[0].set_xlim([x_min, x_max]) ax[0].set_ylim([y_min, y_max]) # ax[0].set_xticks([]) # ax[0].set_yticks([]) ax[0].axis("equal") for line in np.swapaxes(alpha, 1, 0): ax[1].plot(line, linestyle='-') plt.savefig(filename, format='png', bbox_inches='tight', dpi=80) plt.close()
Example #12
Source File: movie.py From kvae with MIT License | 6 votes |
def save_movies_to_frame(images, filename, cmap='Blues'): # Binarize images # images[images > 0] = 1. # Grid images images = np.swapaxes(images, 1, 0) images = np.array([combine_multiple_img(image) for image in images]) # Collect to single image image = movie_to_frame(images) f = plt.figure(figsize=[12, 12]) plt.imshow(image, cmap=plt.cm.get_cmap(cmap), interpolation='none', vmin=0, vmax=1) plt.axis('image') plt.savefig(filename, format='png', bbox_inches='tight', dpi=80) plt.close(f)
Example #13
Source File: FirstDerivative.py From pylops with GNU Lesser General Public License v3.0 | 6 votes |
def _matvec_centered(self, x): if not self.reshape: x = x.squeeze() y = np.zeros(self.N, self.dtype) y[1:-1] = (0.5 * x[2:] - 0.5 * x[0:-2]) / self.sampling if self.edge: y[0] = (x[1] - x[0]) / self.sampling y[-1] = (x[-1] - x[-2]) / self.sampling else: x = np.reshape(x, self.dims) if self.dir > 0: # need to bring the dim. to derive to first dim. x = np.swapaxes(x, self.dir, 0) y = np.zeros(x.shape, self.dtype) y[1:-1] = (0.5 * x[2:] - 0.5 * x[0:-2]) / self.sampling if self.edge: y[0] = (x[1] - x[0]) / self.sampling y[-1] = (x[-1] - x[-2]) / self.sampling if self.dir > 0: y = np.swapaxes(y, 0, self.dir) y = y.ravel() return y
Example #14
Source File: FirstDerivative.py From pylops with GNU Lesser General Public License v3.0 | 6 votes |
def _rmatvec_forward(self, x): if not self.reshape: x = x.squeeze() y = np.zeros(self.N, self.dtype) y[:-1] -= x[:-1] / self.sampling y[1:] += x[:-1] / self.sampling else: x = np.reshape(x, self.dims) if self.dir > 0: # need to bring the dim. to derive to first dim. x = np.swapaxes(x, self.dir, 0) y = np.zeros(x.shape, self.dtype) y[:-1] -= x[:-1] / self.sampling y[1:] += x[:-1] / self.sampling if self.dir > 0: y = np.swapaxes(y, 0, self.dir) y = y.ravel() return y
Example #15
Source File: feat_slicing.py From Attentive-Filtering-Network with MIT License | 6 votes |
def tensor_cnn_frame(mat, M): """Construct a tensor of shape (C x H x W) given an utterance matrix for CNN """ slice_mat = [] for index in np.arange(len(mat)): if index < M: to_left = np.tile(mat[index], M).reshape((M,-1)) rest = mat[index:index+M+1] context = np.vstack((to_left, rest)) elif index >= len(mat)-M: to_right = np.tile(mat[index], M).reshape((M,-1)) rest = mat[index-M:index+1] context = np.vstack((rest, to_right)) else: context = mat[index-M:index+M+1] slice_mat.append(context) slice_mat = np.array(slice_mat) slice_mat = np.expand_dims(slice_mat, axis=1) slice_mat = np.swapaxes(slice_mat, 2, 3) return slice_mat
Example #16
Source File: feat_slicing.py From Attentive-Filtering-Network with MIT License | 6 votes |
def tensor_cnngru(mat): """Construct an utterance tensor for a given utterance matrix mat for CNN+GRU """ mat = np.swapaxes(mat, 0, 1) div = int(mat.shape[1]/400) if div == 0: # short utt tensor_mat = mat while True: shape = tensor_mat.shape[1] if shape + mat.shape[1] < 400: tensor_mat = np.hstack((tensor_mat,mat)) else: tensor_mat = np.hstack((tensor_mat,mat[:,:400-shape])) break elif div == 1: # truncate to 1 tensor_mat = mat[:,:400] else: # TO DO: cut into 2 tensor_mat = mat[:,:400] tensor_mat = np.expand_dims(tensor_mat, axis=2) print(tensor_mat.shape) return tensor_mat
Example #17
Source File: matrixforwardsim.py From pyGSTi with Apache License 2.0 | 6 votes |
def doperation(self, opLabel, flat=False, wrtFilter=None): """ Return the derivative of a length-1 (single-gate) sequence """ dim = self.dim gate = self.sos.get_operation(opLabel) op_wrtFilter, gpindices = self._process_wrtFilter(wrtFilter, gate) # Allocate memory for the final result num_deriv_cols = self.Np if (wrtFilter is None) else len(wrtFilter) flattened_dprod = _np.zeros((dim**2, num_deriv_cols), 'd') _fas(flattened_dprod, [None, gpindices], gate.deriv_wrt_params(op_wrtFilter)) # (dim**2, nParams[opLabel]) if _slct.length(gpindices) > 0: # works for arrays too # Compute the derivative of the entire operation sequence with respect to the # gate's parameters and fill appropriate columns of flattened_dprod. #gate = self.sos.get_operation[opLabel] UNNEEDED (I think) _fas(flattened_dprod, [None, gpindices], gate.deriv_wrt_params(op_wrtFilter)) # (dim**2, nParams in wrtFilter for opLabel) if flat: return flattened_dprod else: # axes = (gate_ij, prod_row, prod_col) return _np.swapaxes(flattened_dprod, 0, 1).reshape((num_deriv_cols, dim, dim))
Example #18
Source File: np_conserved.py From tenpy with GNU General Public License v3.0 | 6 votes |
def iswapaxes(self, axis1, axis2): """Similar as ``np.swapaxes``; in place.""" axis1 = self.get_leg_index(axis1) axis2 = self.get_leg_index(axis2) if axis1 == axis2: return self # nothing to do swap = np.arange(self.rank, dtype=np.intp) swap[axis1], swap[axis2] = axis2, axis1 legs = self.legs legs[axis1], legs[axis2] = legs[axis2], legs[axis1] labels = self._labels labels[axis1], labels[axis2] = labels[axis2], labels[axis1] self._set_shape() self._qdata = self._qdata[:, swap] self._qdata_sorted = False self._data = [t.swapaxes(axis1, axis2) for t in self._data] return self
Example #19
Source File: FirstDerivative.py From pylops with GNU Lesser General Public License v3.0 | 6 votes |
def _rmatvec_backward(self, x): if not self.reshape: x = x.squeeze() y = np.zeros(self.N, self.dtype) y[:-1] -= x[1:] / self.sampling y[1:] += x[1:] / self.sampling else: x = np.reshape(x, self.dims) if self.dir > 0: # need to bring the dim. to derive to first dim. x = np.swapaxes(x, self.dir, 0) y = np.zeros(x.shape, self.dtype) y[:-1] -= x[1:] / self.sampling y[1:] += x[1:] / self.sampling if self.dir > 0: y = np.swapaxes(y, 0, self.dir) y = y.ravel() return y
Example #20
Source File: SecondDerivative.py From pylops with GNU Lesser General Public License v3.0 | 6 votes |
def _matvec(self, x): if not self.reshape: x = x.squeeze() y = np.zeros(self.N, self.dtype) y[1:-1] = (x[2:] - 2*x[1:-1] + x[0:-2]) / self.sampling**2 if self.edge: y[0] = (x[0] - 2*x[1] + x[2]) / self.sampling**2 y[-1] = (x[-3] - 2*x[-2] + x[-1]) / self.sampling**2 else: x = np.reshape(x, self.dims) if self.dir > 0: # need to bring the dim. to derive to first dim. x = np.swapaxes(x, self.dir, 0) y = np.zeros(x.shape, self.dtype) y[1:-1] = (x[2:] - 2*x[1:-1] + x[0:-2])/self.sampling**2 if self.edge: y[0] = (x[0] - 2*x[1] + x[2]) / self.sampling ** 2 y[-1] = (x[-3] - 2*x[-2] + x[-1]) / self.sampling ** 2 if self.dir > 0: y = np.swapaxes(y, 0, self.dir) y = y.ravel() return y
Example #21
Source File: predict.py From cloudless with Apache License 2.0 | 5 votes |
def _load_validation_data(validation_leveldb, width, height): """ Loads all of our validation data from our leveldb database, producing unrolled numpy input vectors ready to test along with their correct, expected target values. """ print "\tLoading validation data..." input_vectors = [] expected_targets = [] db = plyvel.DB(validation_leveldb) for key, value in db: datum = Datum() datum.ParseFromString(value) data = np.fromstring(datum.data, dtype=np.uint8) data = np.reshape(data, (3, height, width)) # Move the color channel to the end to match what Caffe wants. data = np.swapaxes(data, 0, 2) # Swap channel with width. data = np.swapaxes(data, 0, 1) # Swap width with height, to yield final h x w x channel. input_vectors.append(data) expected_targets.append(datum.label) db.close() print "\t\tValidation data has %d images" % len(input_vectors) return { "input_vectors": np.asarray(input_vectors), "expected_targets": np.asarray(expected_targets) }
Example #22
Source File: plot_dict_batch.py From UnsupervisedGeometryAwareRepresentationLearning with GNU General Public License v3.0 | 5 votes |
def tensor_imshow_normalized(ax, img, mean=None, stdDev=None, im_plot_handle=None, x_label=None, clip=True): npimg = img.numpy() npimg = np.swapaxes(npimg, 0, 2) npimg = np.swapaxes(npimg, 0, 1) if mean is None: mean = (0.0, 0.0, 0.0) mean = np.array(mean) if stdDev is None: stdDev = np.array([1.0, 1.0, 1.0]) stdDev = np.array(stdDev) npimg = npimg * stdDev + mean # unnormalize if clip: npimg = np.clip(npimg, 0, 1) if im_plot_handle is not None: im_plot_handle.set_array(npimg) else: im_plot_handle = ax.imshow(npimg) ax.tick_params( axis='x', # changes apply to the x-axis which='both', # both major and minor ticks are affected bottom='off', # ticks along the bottom edge are off top='off', # ticks along the top edge are off labelbottom='off') # labels along the bottom edge are off # when plotting 2D keypoints on top, this ensures that it only plots on the image region ax.set_ylim([img.size()[1],0]) if x_label is not None: plt.xlabel(x_label) return im_plot_handle
Example #23
Source File: image_testing.py From tf-pose with Apache License 2.0 | 5 votes |
def setImage(self, image=None, **kwds): if image is not None and self.__transpose is True: image = np.swapaxes(image, 0, 1) return ImageItem.setImage(self, image, **kwds)
Example #24
Source File: atlas.py From ibllib with MIT License | 5 votes |
def AllenAtlas(res_um=25, par=None): """ Instantiates an atlas.BrainAtlas corresponding to the Allen CCF at the given resolution using the IBL Bregma and coordinate system :param res_um: 25 or 50 um :return: atlas.BrainAtlas """ if par is None: # Bregma indices for the 10um Allen Brain Atlas, mlapdv pdefault = { 'PATH_ATLAS': '/datadisk/BrainAtlas/ATLASES/Allen/', 'FILE_REGIONS': str(Path(__file__).parent.joinpath('allen_structure_tree.csv')), 'INDICES_BREGMA': list(np.array([1140 - (570 + 3.9), 540, 0 + 33.2])) } par = params.read('ibl_histology', default=pdefault) if not Path(par.PATH_ATLAS).exists(): raise NotImplementedError("Atlas doesn't exist ! Mock option not implemented yet") # TODO: mock atlas to get only the coordinate framework pass params.write('ibl_histology', par) else: par = Bunch(par) # file_image = Path(path_atlas).joinpath(f'ara_nissl_{res_um}.nrrd') file_image = Path(par.PATH_ATLAS).joinpath(f'average_template_{res_um}.nrrd') file_label = Path(par.PATH_ATLAS).joinpath(f'annotation_{res_um}.nrrd') image, header = nrrd.read(file_image, index_order='C') # dv, ml, ap image = np.swapaxes(np.swapaxes(image, 2, 0), 1, 2) # image[iap, iml, idv] label, header = nrrd.read(file_label, index_order='C') # dv, ml, ap label = np.swapaxes(np.swapaxes(label, 2, 0), 1, 2) # label[iap, iml, idv] # resulting volumes origin: x right, y front, z top df_regions = pd.read_csv(par.FILE_REGIONS) regions = BrainRegions(id=df_regions.id.values, name=df_regions.name.values, acronym=df_regions.acronym.values) xyz2dims = np.array([1, 0, 2]) dims2xyz = np.array([1, 0, 2]) dxyz = res_um * 1e-6 * np.array([-1, -1, -1]) ibregma = (np.array(par.INDICES_BREGMA) * 10 / res_um) return BrainAtlas(image, label, regions, dxyz, ibregma, dims2xyz=dims2xyz, xyz2dims=xyz2dims)
Example #25
Source File: np_conserved.py From tenpy with GNU General Public License v3.0 | 5 votes |
def iscale_axis(self, s, axis=-1): """Scale with varying values along an axis; in place. Rescale to ``new_self[i1, ..., i_axis, ...] = s[i_axis] * self[i1, ..., i_axis, ...]``. Parameters ---------- s : 1D array, len=self.shape[axis] The vector with which the axis should be scaled. axis : str|int The leg label or index for the axis which should be scaled. See also -------- iproject : can be used to discard indices for which s is zero. """ axis = self.get_leg_index(axis) s = np.asarray(s) if s.shape != (self.shape[axis], ): raise ValueError("s has wrong shape: " + str(s.shape) + " instead of " + str(self.shape[axis])) self.dtype = np.find_common_type([self.dtype], [s.dtype]) leg = self.legs[axis] if axis != self.rank - 1: self._data = [ np.swapaxes(np.swapaxes(t, axis, -1) * s[leg.get_slice(qi)], axis, -1) for qi, t in zip(self._qdata[:, axis], self._data) ] else: # optimize: no need to swap axes, if axis is -1. self._data = [ t * s[leg.get_slice(qi)] # (it's slightly faster for large arrays) for qi, t in zip(self._qdata[:, axis], self._data) ] return self
Example #26
Source File: test_np_conserved.py From tenpy with GNU General Public License v3.0 | 5 votes |
def test_npc_Array_transpose(): a = random_Array((20, 15, 10), chinfo) aflat = a.to_ndarray() for tr in [None, [2, 1, 0], (1, 2, 0), (0, 2, 1)]: atr = a.transpose(tr) atr.test_sanity() npt.assert_equal(atr.to_ndarray(), aflat.transpose(tr)) ax1, ax2 = -1, 0 a.iswapaxes(ax1, ax2) npt.assert_equal(a.to_ndarray(), aflat.swapaxes(ax1, ax2))
Example #27
Source File: test_np_conserved.py From tenpy with GNU General Public License v3.0 | 5 votes |
def test_npc_addition_transpose(): # addition with labels and transposed axes a1 = np.random.random([3, 3, 4]) a2 = np.swapaxes(a1, 0, 1) t1 = npc.Array.from_ndarray_trivial(a1, labels=['a', 'b', 'c']) t2 = npc.Array.from_ndarray_trivial(a2, labels=['b', 'a', 'c']) # TODO: for now warning with pytest.warns(FutureWarning): diff = npc.norm(t1 - t2) # TODO: when the behaviour is changed do # diff = npc.norm(t1 - t2) # assert diff < 1.e-10
Example #28
Source File: test_core_execute.py From mars with Apache License 2.0 | 5 votes |
def testViewDataOnSwapaxes(self): data = np.random.rand(10, 20) a = tensor(data, chunk_size=6) b = swapaxes(a, 1, 0) a[1] = 10 npa = data.copy() npb = np.swapaxes(npa, 1, 0) npa[1] = 10 np.testing.assert_array_equal(b.execute(), npb) np.testing.assert_array_equal(a.execute(), npa)
Example #29
Source File: CausalIntegration.py From pylops with GNU Lesser General Public License v3.0 | 5 votes |
def _rmatvec(self, x): if self.reshape: x = np.reshape(x, self.dims) if self.dir != -1: x = np.swapaxes(x, self.dir, -1) xflip = np.flip(x, axis=-1) if self.halfcurrent: y = self.sampling * (np.cumsum(xflip, axis=-1) - xflip/2.) else: y = self.sampling * np.cumsum(xflip, axis=-1) y = np.flip(y, axis=-1) if self.dir != -1: y = np.swapaxes(y, -1, self.dir) return y.ravel()
Example #30
Source File: stress_gui.py From fenics-topopt with MIT License | 5 votes |
def __init__(self, nelx, nely, stress_calculator, nu, title=""): """Initialize plot and plot the initial design""" super(StressGUI, self).__init__(nelx, nely, title) self.stress_im = self.ax.imshow( np.swapaxes(np.zeros((nelx, nely, 4)), 0, 1), norm=colors.Normalize(vmin=0, vmax=1), cmap='jet') self.fig.colorbar(self.stress_im) self.stress_calculator = stress_calculator self.nu = nu self.myColorMap = colormaps.ScalarMappable( norm=colors.Normalize(vmin=0, vmax=1), cmap=colormaps.jet)