Python numpy.ones_like() Examples

The following are 30 code examples of numpy.ones_like(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module numpy , or try the search function .
Example #1
Source File: test_masking.py    From yatsm with MIT License 6 votes vote down vote up
def masking_data(request):
    # Two years, 8 day repeat
    x = np.arange(735851, 735851 + 365 * 2, 8)

    # Simulate some timeseries in green & swir1
    def seasonality(x, amp):
        return np.cos(2 * np.pi / 365.25 * x) * amp
    green = np.ones_like(x) * 1000 + seasonality(x, 750)
    swir1 = np.ones_like(x) * 1250 + seasonality(x, 500)
    Y = np.vstack((green, swir1))

    # Add in some noise
    idx_green_noise = 15
    idx_swir1_noise = 30

    Y[0, idx_green_noise] = 8000
    Y[1, idx_swir1_noise] = 10

    return x, Y, np.array([idx_green_noise, idx_swir1_noise]) 
Example #2
Source File: numerical.py    From Kaggler with MIT License 6 votes vote down vote up
def _transform_col(self, x, i):
        """Encode one numerical feature column to quantiles.

        Args:
            x (pandas.Series): numerical feature column to encode
            i (int): column index of the numerical feature

        Returns:
            Encoded feature (pandas.Series).
        """
        # Map values to the emperical CDF between .1% and 99.9%
        rv = np.ones_like(x) * -1

        filt = ~np.isnan(x)
        rv[filt] = np.floor((self.ecdfs[i](x[filt]) * 0.998 + .001) *
                            self.n_label)

        return rv 
Example #3
Source File: util.py    From neural-fingerprinting with BSD 3-Clause "New" or "Revised" License 6 votes vote down vote up
def train_lr_rfeinman(densities_pos, densities_neg, uncerts_pos, uncerts_neg):
    """
    TODO
    :param densities_pos:
    :param densities_neg:
    :param uncerts_pos:
    :param uncerts_neg:
    :return:
    """
    values_neg = np.concatenate(
        (densities_neg.reshape((1, -1)),
         uncerts_neg.reshape((1, -1))),
        axis=0).transpose([1, 0])
    values_pos = np.concatenate(
        (densities_pos.reshape((1, -1)),
         uncerts_pos.reshape((1, -1))),
        axis=0).transpose([1, 0])

    values = np.concatenate((values_neg, values_pos))
    labels = np.concatenate(
        (np.zeros_like(densities_neg), np.ones_like(densities_pos)))

    lr = LogisticRegressionCV(n_jobs=-1).fit(values, labels)

    return values, labels, lr 
Example #4
Source File: util.py    From neural-fingerprinting with BSD 3-Clause "New" or "Revised" License 6 votes vote down vote up
def compute_roc_rfeinman(probs_neg, probs_pos, plot=False):
    """
    TODO
    :param probs_neg:
    :param probs_pos:
    :param plot:
    :return:
    """
    probs = np.concatenate((probs_neg, probs_pos))
    labels = np.concatenate((np.zeros_like(probs_neg), np.ones_like(probs_pos)))
    fpr, tpr, _ = roc_curve(labels, probs)
    auc_score = auc(fpr, tpr)
    if plot:
        plt.figure(figsize=(7, 6))
        plt.plot(fpr, tpr, color='blue',
                 label='ROC (AUC = %0.4f)' % auc_score)
        plt.legend(loc='lower right')
        plt.title("ROC Curve")
        plt.xlabel("FPR")
        plt.ylabel("TPR")
        plt.show()

    return fpr, tpr, auc_score 
Example #5
Source File: test_constraint.py    From scarlet with MIT License 6 votes vote down vote up
def test_symmetry(self):
        shape = (5, 5)
        X = np.arange(shape[0] * shape[1], dtype=float).reshape(*shape)

        # symmetry
        step = 0
        X_ = X.copy()
        constraint = scarlet.SymmetryConstraint()
        X_ = constraint(X_, step)
        new_X = np.ones_like(X) * 12
        assert_almost_equal(X_, new_X)

        # symmetry at half strength
        X_ = X.copy()
        constraint = scarlet.SymmetryConstraint(strength=0.5)
        X_ = constraint(X_, step)
        new_X = [
            [6.0, 6.5, 7.0, 7.5, 8.0],
            [8.5, 9.0, 9.5, 10.0, 10.5],
            [11.0, 11.5, 12.0, 12.5, 13.0],
            [13.5, 14.0, 14.5, 15.0, 15.5],
            [16.0, 16.5, 17.0, 17.5, 18.0],
        ]
        assert_almost_equal(X_, new_X) 
Example #6
Source File: networks.py    From connecting_the_dots with MIT License 6 votes vote down vote up
def tforward(self, disp0, im, std=None):
    self.pattern = self.pattern.to(disp0.device)
    self.uv0 = self.uv0.to(disp0.device)

    uv0 = self.uv0.expand(disp0.shape[0], *self.uv0.shape[1:])
    uv1 = torch.empty_like(uv0)
    uv1[...,0] = uv0[...,0] - disp0.contiguous().view(disp0.shape[0],-1)
    uv1[...,1] = uv0[...,1]

    uv1[..., 0] = 2 * (uv1[..., 0] / (self.im_width-1) - 0.5)
    uv1[..., 1] = 2 * (uv1[..., 1] / (self.im_height-1) - 0.5)
    uv1 = uv1.view(-1, self.im_height, self.im_width, 2).clone()
    pattern = self.pattern.expand(disp0.shape[0], *self.pattern.shape[1:])
    pattern_proj = torch.nn.functional.grid_sample(pattern, uv1, padding_mode='border')
    mask = torch.ones_like(im)
    if std is not None:
      mask = mask*std

    diff = torchext.photometric_loss(pattern_proj.contiguous(), im.contiguous(), 9, self.loss_type, self.loss_eps)
    val = (mask*diff).sum() / mask.sum()
    return val, pattern_proj 
Example #7
Source File: eom_kccsd_ghf.py    From pyscf with Apache License 2.0 6 votes vote down vote up
def mask_frozen_ip(eom, vector, kshift, const=LARGE_DENOM):
    '''Replaces all frozen orbital indices of `vector` with the value `const`.'''
    r1, r2 = eom.vector_to_amplitudes(vector, kshift=kshift)
    nkpts = eom.nkpts
    nocc, nmo = eom.nocc, eom.nmo
    kconserv = eom.kconserv

    # Get location of padded elements in occupied and virtual space
    nonzero_opadding, nonzero_vpadding = eom.nonzero_opadding, eom.nonzero_vpadding

    new_r1 = const * np.ones_like(r1)
    new_r2 = const * np.ones_like(r2)

    new_r1[nonzero_opadding[kshift]] = r1[nonzero_opadding[kshift]]
    for ki in range(nkpts):
        for kj in range(nkpts):
            kb = kconserv[ki, kshift, kj]
            idx = np.ix_([ki], [kj], nonzero_opadding[ki], nonzero_opadding[kj], nonzero_vpadding[kb])
            new_r2[idx] = r2[idx]

    return eom.amplitudes_to_vector(new_r1, new_r2, kshift, kconserv) 
Example #8
Source File: eom_kccsd_ghf.py    From pyscf with Apache License 2.0 6 votes vote down vote up
def mask_frozen_ea(eom, vector, kshift, const=LARGE_DENOM):
    '''Replaces all frozen orbital indices of `vector` with the value `const`.'''
    r1, r2 = eom.vector_to_amplitudes(vector, kshift=kshift)
    kconserv = eom.kconserv
    nkpts = eom.nkpts
    nocc, nmo = eom.nocc, eom.nmo

    # Get location of padded elements in occupied and virtual space
    nonzero_opadding, nonzero_vpadding = eom.nonzero_opadding, eom.nonzero_vpadding

    new_r1 = const * np.ones_like(r1)
    new_r2 = const * np.ones_like(r2)

    new_r1[nonzero_vpadding[kshift]] = r1[nonzero_vpadding[kshift]]
    for kj in range(nkpts):
        for ka in range(nkpts):
            kb = kconserv[kshift, ka, kj]
            idx = np.ix_([kj], [ka], nonzero_opadding[kj], nonzero_vpadding[ka], nonzero_vpadding[kb])
            new_r2[idx] = r2[idx]

    return eom.amplitudes_to_vector(new_r1, new_r2, kshift, kconserv) 
Example #9
Source File: operations.py    From simpleflow with MIT License 6 votes vote down vote up
def compute_gradient(self, grad=None):
        ''' Compute and return the gradient for matrix multiplication.

        :param grad: The gradient of other operation wrt the matmul output.
        :type grad: number or a ndarray, default value is 1.0.
        '''
        # Get input values.
        x, y = [node.output_value for node in self.input_nodes]

        # Default gradient wrt the matmul output.
        if grad is None:
            grad = np.ones_like(self.output_value)

        # Gradients wrt inputs.
        dfdx = np.dot(grad, np.transpose(y))
        dfdy = np.dot(np.transpose(x), grad)

        return [dfdx, dfdy] 
Example #10
Source File: operations.py    From simpleflow with MIT License 6 votes vote down vote up
def compute_gradient(self, grad=None):
        ''' Compute the gradient for negative operation wrt input value.

        :param grad: The gradient of other operation wrt the negative output.
        :type grad: ndarray.
        '''
        input_value = self.input_nodes[0].output_value

        if grad is None:
            grad = np.ones_like(self.output_value)

        output_shape = np.array(np.shape(input_value))
        output_shape[self.axis] = 1.0
        tile_scaling = np.shape(input_value) // output_shape
        grad = np.reshape(grad, output_shape)
        return np.tile(grad, tile_scaling) 
Example #11
Source File: pano_lsd_align.py    From HorizonNet with MIT License 6 votes vote down vote up
def separatePano(panoImg, fov, x, y, imgSize=320):
    '''cut a panorama image into several separate views'''
    assert x.shape == y.shape
    if not isinstance(fov, np.ndarray):
        fov = fov * np.ones_like(x)

    sepScene = [
        {
            'img': imgLookAt(panoImg.copy(), xi, yi, imgSize, fovi),
            'vx': xi,
            'vy': yi,
            'fov': fovi,
            'sz': imgSize,
        }
        for xi, yi, fovi in zip(x, y, fov)
    ]

    return sepScene 
Example #12
Source File: bottom_up.py    From Dispersion-based-Clustering with MIT License 6 votes vote down vote up
def linkage_calculation(self, dist, labels, penalty): 
        cluster_num = len(self.label_to_images.keys())
        start_index = np.zeros(cluster_num,dtype=np.int)
        end_index = np.zeros(cluster_num,dtype=np.int)
        counts=0
        i=0
        for key in sorted(self.label_to_images.keys()):
            start_index[i] = counts
            end_index[i] = counts + len(self.label_to_images[key])
            counts = end_index[i]
            i=i+1
        dist=dist.numpy()
        linkages = np.zeros([cluster_num, cluster_num])
        for i in range(cluster_num):
            for j in range(i, cluster_num):
                linkage = dist[start_index[i]:end_index[i], start_index[j]:end_index[j]]
                linkages[i,j] = np.average(linkage)



        linkages = linkages.T + linkages - linkages * np.eye(cluster_num)
        intra = linkages.diagonal()
        penalized_linkages = linkages + penalty * ((intra * np.ones_like(linkages)).T + intra).T
        return linkages, penalized_linkages 
Example #13
Source File: test_optimization_methods.py    From simnibs with GNU General Public License v3.0 6 votes vote down vote up
def test_2_targets_field_component(self, optimization_variables_avg):
        l, Q, A = optimization_variables_avg
        l2 = l[::-1]
        l = np.vstack([l ,l2])
        m = 2e-3
        m1 = 4e-3
        x = optimization_methods.optimize_field_component(l, max_el_current=m,
                                                          max_total_current=m1)

        l_avg = np.average(l, axis=0)
        x_sp = optimize_comp(l_avg, np.ones_like(l2), max_el_current=m, max_total_current=m1)

        assert np.linalg.norm(x, 1) <= 2 * m1 + 1e-4
        assert np.all(np.abs(x) <= m + 1e-6)
        assert np.isclose(l_avg.dot(x), l_avg.dot(x_sp),
                          rtol=1e-4, atol=1e-4)
        assert np.isclose(np.sum(x), 0) 
Example #14
Source File: visualization_utils.py    From vehicle_counting_tensorflow with MIT License 5 votes vote down vote up
def draw_mask_on_image_array(image, mask, color='red', alpha=0.4):
  """Draws mask on an image.

  Args:
    image: uint8 numpy array with shape (img_height, img_height, 3)
    mask: a uint8 numpy array of shape (img_height, img_height) with
      values between either 0 or 1.
    color: color to draw the keypoints with. Default is red.
    alpha: transparency value between 0 and 1. (default: 0.4)

  Raises:
    ValueError: On incorrect data type for image or masks.
  """
  if image.dtype != np.uint8:
    raise ValueError('`image` not of type np.uint8')
  if mask.dtype != np.uint8:
    raise ValueError('`mask` not of type np.uint8')
  if np.any(np.logical_and(mask != 1, mask != 0)):
    raise ValueError('`mask` elements should be in [0, 1]')
  if image.shape[:2] != mask.shape:
    raise ValueError('The image has spatial dimensions %s but the mask has '
                     'dimensions %s' % (image.shape[:2], mask.shape))
  rgb = ImageColor.getrgb(color)
  pil_image = Image.fromarray(image)

  solid_color = np.expand_dims(
      np.ones_like(mask), axis=2) * np.reshape(list(rgb), [1, 1, 3])
  pil_solid_color = Image.fromarray(np.uint8(solid_color)).convert('RGBA')
  pil_mask = Image.fromarray(np.uint8(255.0*alpha*mask)).convert('L')
  pil_image = Image.composite(pil_solid_color, pil_image, pil_mask)
  np.copyto(image, np.array(pil_image.convert('RGB'))) 
Example #15
Source File: visualization_utils.py    From vehicle_counting_tensorflow with MIT License 5 votes vote down vote up
def draw_mask_on_image_array(image, mask, color='red', alpha=0.7):
  """Draws mask on an image.

  Args:
    image: uint8 numpy array with shape (img_height, img_height, 3)
    mask: a uint8 numpy array of shape (img_height, img_height) with
      values between either 0 or 1.
    color: color to draw the keypoints with. Default is red.
    alpha: transparency value between 0 and 1. (default: 0.7)

  Raises:
    ValueError: On incorrect data type for image or masks.
  """
  if image.dtype != np.uint8:
    raise ValueError('`image` not of type np.uint8')
  if mask.dtype != np.uint8:
    raise ValueError('`mask` not of type np.uint8')
  if np.any(np.logical_and(mask != 1, mask != 0)):
    raise ValueError('`mask` elements should be in [0, 1]')
  rgb = ImageColor.getrgb(color)
  pil_image = Image.fromarray(image)

  solid_color = np.expand_dims(
      np.ones_like(mask), axis=2) * np.reshape(list(rgb), [1, 1, 3])
  pil_solid_color = Image.fromarray(np.uint8(solid_color)).convert('RGBA')
  pil_mask = Image.fromarray(np.uint8(255.0*alpha*mask)).convert('L')
  pil_image = Image.composite(pil_solid_color, pil_image, pil_mask)
  np.copyto(image, np.array(pil_image.convert('RGB'))) 
Example #16
Source File: fancy.py    From brainforge with GNU General Public License v3.0 5 votes vote down vote up
def backpropagate(self, delta: np.ndarray) -> np.ndarray:
        output = delta * self.mask
        self.mask = np.ones_like(self.mask) * self.dropchance
        return output 
Example #17
Source File: program_executor.py    From NSCL-PyTorch-Release with MIT License 5 votes vote down vote up
def relate(self, scene, x, f):
        relations = scene['relationships']
        t = x.argmax(-1)
        assert len(f) == 1
        f = f[0]
        y = np.ones_like(x)
        for i in range(len(y)):
            if i not in relations[f][t]:
                y[i] = 0
        return y 
Example #18
Source File: test_datetime.py    From recruit with Apache License 2.0 5 votes vote down vote up
def test_datetime_like(self):
        a = np.array([3], dtype='m8[4D]')
        b = np.array(['2012-12-21'], dtype='M8[D]')

        assert_equal(np.ones_like(a).dtype, a.dtype)
        assert_equal(np.zeros_like(a).dtype, a.dtype)
        assert_equal(np.empty_like(a).dtype, a.dtype)
        assert_equal(np.ones_like(b).dtype, b.dtype)
        assert_equal(np.zeros_like(b).dtype, b.dtype)
        assert_equal(np.empty_like(b).dtype, b.dtype) 
Example #19
Source File: program_executor.py    From NSCL-PyTorch-Release with MIT License 5 votes vote down vote up
def filter(self, scene, x, filters):
        objects = scene['objects']
        y = np.ones_like(x)
        for i, o in enumerate(objects):
            for f in filters:
                attr = gdef.concept2attribute[f]
                if (isinstance(o[attr], six.string_types) and o[attr] != f) or (isinstance(o[attr], (tuple, list)) and f not in o[attr]):
                    y[i] = 0
                    break
        return np.minimum(x, y) 
Example #20
Source File: utils.py    From sadl with MIT License 5 votes vote down vote up
def compute_roc_auc(test_sa, adv_sa, split=1000):
    tr_test_sa = np.array(test_sa[:split])
    tr_adv_sa = np.array(adv_sa[:split])

    tr_values = np.concatenate(
        (tr_test_sa.reshape(-1, 1), tr_adv_sa.reshape(-1, 1)), axis=0
    )
    tr_labels = np.concatenate(
        (np.zeros_like(tr_test_sa), np.ones_like(tr_adv_sa)), axis=0
    )

    lr = LogisticRegressionCV(cv=5, n_jobs=-1).fit(tr_values, tr_labels)

    ts_test_sa = np.array(test_sa[split:])
    ts_adv_sa = np.array(adv_sa[split:])
    values = np.concatenate(
        (ts_test_sa.reshape(-1, 1), ts_adv_sa.reshape(-1, 1)), axis=0
    )
    labels = np.concatenate(
        (np.zeros_like(ts_test_sa), np.ones_like(ts_adv_sa)), axis=0
    )

    probs = lr.predict_proba(values)[:, 1]

    _, _, auc_score = compute_roc(
        probs_neg=probs[: (len(test_sa) - split)],
        probs_pos=probs[(len(test_sa) - split) :],
    )

    return auc_score 
Example #21
Source File: test_numeric.py    From recruit with Apache License 2.0 5 votes vote down vote up
def test_ones_like(self):
        self.check_like_function(np.ones_like, 1) 
Example #22
Source File: utils.py    From sadl with MIT License 5 votes vote down vote up
def compute_roc(probs_neg, probs_pos):
    probs = np.concatenate((probs_neg, probs_pos))
    labels = np.concatenate((np.zeros_like(probs_neg), np.ones_like(probs_pos)))
    fpr, tpr, _ = roc_curve(labels, probs)
    auc_score = auc(fpr, tpr)

    return fpr, tpr, auc_score 
Example #23
Source File: timeresp_test.py    From python-control with BSD 3-Clause "New" or "Revised" License 5 votes vote down vote up
def test_lsim_double_integrator(self):
        # Note: scipy.signal.lsim fails if A is not invertible
        A = np.mat("0. 1.;0. 0.")
        B = np.mat("0.; 1.")
        C = np.mat("1. 0.")
        D = 0.
        sys = StateSpace(A, B, C, D)

        def check(u, x0, xtrue):
            _t, yout, xout = forced_response(sys, t, u, x0)
            np.testing.assert_array_almost_equal(xout, xtrue, decimal=6)
            ytrue = np.squeeze(np.asarray(C.dot(xtrue)))
            np.testing.assert_array_almost_equal(yout, ytrue, decimal=6)

        # test with zero input
        npts = 10
        t = np.linspace(0, 1, npts)
        u = np.zeros_like(t)
        x0 = np.array([2., 3.])
        xtrue = np.zeros((2, npts))
        xtrue[0, :] = x0[0] + t * x0[1]
        xtrue[1, :] = x0[1]
        check(u, x0, xtrue)

        # test with step input
        u = np.ones_like(t)
        xtrue = np.array([0.5 * t**2, t])
        x0 = np.array([0., 0.])
        check(u, x0, xtrue)

        # test with linear input
        u = t
        xtrue = np.array([1./6. * t**3, 0.5 * t**2])
        check(u, x0, xtrue) 
Example #24
Source File: test_umath.py    From recruit with Apache License 2.0 5 votes vote down vote up
def test_integer_power_with_integer_zero_exponent(self):
        dtypes = np.typecodes['Integer']
        for dt in dtypes:
            arr = np.arange(-10, 10, dtype=dt)
            assert_equal(np.power(arr, 0), np.ones_like(arr))

        dtypes = np.typecodes['UnsignedInteger']
        for dt in dtypes:
            arr = np.arange(10, dtype=dt)
            assert_equal(np.power(arr, 0), np.ones_like(arr)) 
Example #25
Source File: bottom_up.py    From Dispersion-based-Clustering with MIT License 5 votes vote down vote up
def select_merge_data_v2(self, u_feas, labels, linkages):
        linkages += np.tril(100000 * np.ones_like(linkages))
        ind = np.unravel_index(np.argsort(linkages, axis=None),
                               linkages.shape)  
        idx1 = ind[0] 
        idx2 = ind[1] 
        return idx1, idx2 
Example #26
Source File: utils.py    From tangent with Apache License 2.0 5 votes vote down vote up
def test_reverse_array(func, motion, optimized, preserve_result, *args):
  """Test gradients of functions with NumPy-compatible signatures."""

  def tangent_func():
    y = func(*deepcopy(args))
    if np.array(y).size > 1:
      init_grad = np.ones_like(y)
    else:
      init_grad = 1
    func.__globals__['np'] = np
    df = tangent.autodiff(
        func,
        mode='reverse',
        motion=motion,
        optimized=optimized,
        preserve_result=preserve_result,
        verbose=1)
    if motion == 'joint':
      return df(*deepcopy(args) + (init_grad,))
    return df(*deepcopy(args), init_grad=init_grad)

  def reference_func():
    func.__globals__['np'] = ag_np
    if preserve_result:
      val, gradval = ag_value_and_grad(func)(*deepcopy(args))
      return gradval, val
    else:
      return ag_grad(func)(*deepcopy(args))

  def backup_reference_func():
    func.__globals__['np'] = np
    df_num = numeric_grad(func)
    gradval = df_num(*deepcopy(args))
    if preserve_result:
      val = func(*deepcopy(args))
      return gradval, val
    else:
      return gradval

  assert_result_matches_reference(tangent_func, reference_func,
                                  backup_reference_func) 
Example #27
Source File: utils.py    From tangent with Apache License 2.0 5 votes vote down vote up
def numeric_grad(func, eps=1e-6):
  """Generate a finite-differences gradient of function `f`.

  def f(x, *args):
    ...
    return scalar

  g = numeric_grad(f, eps=1e-4)
  finite_difference_grad_of_x = g(x, *args)

  Adapted from github.com/hips/autograd
  """
  def g(x, *args):
    fd_grad, unflatten_fd = flatten(tangent.init_grad(x))
    y = func(deepcopy(x), *args)
    seed = np.ones_like(y)
    for d in range(fd_grad.size):
      x_flat, unflatten_x = flatten(deepcopy(x))
      x_flat[d] += eps / 2
      a = np.array(func(unflatten_x(x_flat), *args))
      x_flat, unflatten_x = flatten(deepcopy(x))
      x_flat[d] -= eps / 2
      b = np.array(func(unflatten_x(x_flat), *args))
      fd_grad[d] = np.dot((a - b) / eps, seed)
    return unflatten_fd(fd_grad)

  return g 
Example #28
Source File: test_umath.py    From recruit with Apache License 2.0 5 votes vote down vote up
def test_integer_power_of_1(self):
        dtypes = np.typecodes['AllInteger']
        for dt in dtypes:
            arr = np.arange(10, dtype=dt)
            assert_equal(np.power(1, arr), np.ones_like(arr)) 
Example #29
Source File: test_optimization_methods.py    From simnibs with GNU General Public License v3.0 5 votes vote down vote up
def test_both_constraints_infeasible(self, optimization_variables_avg):
        l, Q, A = optimization_variables_avg
        m = 2e-3
        m1 = 4e-3
        f = 4e-2
        x = optimization_methods.optimize_focality(l, Q, f,
                                                   max_el_current=m,
                                                   max_total_current=m1)

        x_sp = optimize_comp(l, np.ones_like(l), max_el_current=m, max_total_current=m1)
        assert np.linalg.norm(x, 1) <= 2 * m1 + 1e-4
        assert np.all(np.abs(x) <= m + 1e-4)
        assert np.isclose(np.sum(x), 0)
        assert np.allclose(l.dot(x), l.dot(x_sp), rtol=1e-4, atol=1e-5) 
Example #30
Source File: program_executor.py    From NSCL-PyTorch-Release with MIT License 5 votes vote down vote up
def relate_ae(self, scene, x, attr):
        objects = scene['objects']
        t = x.argmax(-1)
        y = np.ones_like(x)
        for i, o in enumerate(objects):
            if o[attr] != objects[t][attr] or i == t:
                y[i] = 0
        return y