Python numpy.alltrue() Examples
The following are 30
code examples of numpy.alltrue().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example #1
Source File: test_missing_values_cleaner.py From scikit-multiflow with BSD 3-Clause "New" or "Revised" License | 6 votes |
def test_missing_values_cleaner(test_path): test_file = os.path.join(test_path, 'data_nan.npy') X_nan = np.load(test_file) X = copy(X_nan) cleaner = MissingValuesCleaner(missing_value=np.nan, strategy='zero') X_complete = cleaner.transform(X) test_file = os.path.join(test_path, 'data_complete.npy') X_expected = np.load(test_file) assert np.alltrue(X_complete == X_expected) expected_info = "MissingValuesCleaner(missing_value=[nan], new_value=1, strategy='zero',\n" \ " window_size=200)" assert cleaner.get_info() == expected_info assert cleaner._estimator_type == 'transform'
Example #2
Source File: test_windowed_standard_scaler.py From scikit-multiflow with BSD 3-Clause "New" or "Revised" License | 6 votes |
def test_windowed_standard_scaler(test_path): X_orig = np.array([[1., 2., 3., 4.], [2., 3., 4., 5.], [3., 4., 5., 6.], [5., 4., 3., 2.], [4., 3., 2., 1.], [0., 1., 0., 1.], [3., 2., 3., 4.], [1., 2., 3., 4.], [2., 3., 4., 5.], [3., 4., 5., 6.], [5., 4., 3., 2.], [4., 3., 2., 1.], [0., 1., 0., 1.], [3., 2., 3., 4.], [1., 2., 3., 4.], [2., 3., 4., 5.], [3., 4., 5., 6.], [5., 4., 3., 2.], [4., 3., 2., 1.], [0., 1., 0., 1.], [3., 2., 3., 4.], [1., 2., 3., 4.], [2., 3., 4., 5.], [3., 4., 5., 6.], [5., 4., 3., 2.], [4., 3., 2., 1.], [0., 1., 0., 1.], [3., 2., 3., 4.], [1., 2., 3., 4.], [2., 3., 4., 5.], [3., 4., 5., 6.], [5., 4., 3., 2.], [4., 3., 2., 1.], [0., 1., 0., 1.], [3., 2., 3., 4.], [1., 2., 3., 4.], [2., 3., 4., 5.], [3., 4., 5., 6.], [5., 4., 3., 2.], [4., 3., 2., 1.], [0., 1., 0., 1.], [3., 2., 3., 4.], [1., 2., 3., 4.], [2., 3., 4., 5.], [3., 4., 5., 6.], [5., 4., 3., 2.], [4., 3., 2., 1.], [0., 1., 0., 1.], [3., 2., 3., 4.], [1., 2., 3., 4.], [2., 3., 4., 5.], [3., 4., 5., 6.], [5., 4., 3., 2.], [4., 3., 2., 1.], [0., 1., 0., 1.], [3., 2., 3., 4.], [1., 2., 3., 4.], [2., 3., 4., 5.], [3., 4., 5., 6.], [5., 4., 3., 2.], [4., 3., 2., 1.], [0., 1., 0., 1.], [3., 2., 3., 4.], [1., 2., 3., 4.], [2., 3., 4., 5.], [3., 4., 5., 6.], [5., 4., 3., 2.], [4., 3., 2., 1.], [0., 1., 0., 1.], [3., 2., 3., 4.], [1., 2., 3., 4.], [2., 3., 4., 5.], [3., 4., 5., 6.], [5., 4., 3., 2.], [4., 3., 2., 1.], [0., 1., 0., 1.], [3., 2., 3., 4.]]) X = copy(X_orig) cleaner = WindowedStandardScaler(window_size=20) X_complete = cleaner.transform(X) test_file = os.path.join(test_path, 'std_scaler.npy') X_expected = np.load(test_file) assert np.alltrue(X_complete == X_expected)
Example #3
Source File: test_leverage_bagging.py From scikit-multiflow with BSD 3-Clause "New" or "Revised" License | 6 votes |
def run_prequential_supervised(stream, learner, max_samples, n_wait, y_expected=None): stream.restart() y_pred = np.zeros(max_samples // n_wait, dtype=np.int) y_true = np.zeros(max_samples // n_wait, dtype=np.int) j = 0 for i in range(max_samples): X, y = stream.next_sample() # Test every n samples if i % n_wait == 0: y_pred[j] = int(learner.predict(X)[0]) y_true[j] = (y[0]) j += 1 learner.partial_fit(X, y, classes=stream.target_values) assert type(learner.predict(X)) == np.ndarray if y_expected is not None: assert np.alltrue(y_pred == y_expected)
Example #4
Source File: test_windowed_minmax_scaler.py From scikit-multiflow with BSD 3-Clause "New" or "Revised" License | 6 votes |
def test_windowed_minmax_scaler(test_path): X_orig = np.array([[1., 2., 3., 4.], [2., 3., 4., 5.], [3., 4., 5., 6.], [5., 4., 3., 2.], [4., 3., 2., 1.], [0., 1., 0., 1.], [3., 2., 3., 4.], [1., 2., 3., 4.], [2., 3., 4., 5.], [3., 4., 5., 6.], [5., 4., 3., 2.], [4., 3., 2., 1.], [0., 1., 0., 1.], [3., 2., 3., 4.], [1., 2., 3., 4.], [2., 3., 4., 5.], [3., 4., 5., 6.], [5., 4., 3., 2.], [4., 3., 2., 1.], [0., 1., 0., 1.], [3., 2., 3., 4.], [1., 2., 3., 4.], [2., 3., 4., 5.], [3., 4., 5., 6.], [5., 4., 3., 2.], [4., 3., 2., 1.], [0., 1., 0., 1.], [3., 2., 3., 4.], [1., 2., 3., 4.], [2., 3., 4., 5.], [3., 4., 5., 6.], [5., 4., 3., 2.], [4., 3., 2., 1.], [0., 1., 0., 1.], [3., 2., 3., 4.], [1., 2., 3., 4.], [2., 3., 4., 5.], [3., 4., 5., 6.], [5., 4., 3., 2.], [4., 3., 2., 1.], [0., 1., 0., 1.], [3., 2., 3., 4.], [1., 2., 3., 4.], [2., 3., 4., 5.], [3., 4., 5., 6.], [5., 4., 3., 2.], [4., 3., 2., 1.], [0., 1., 0., 1.], [3., 2., 3., 4.], [1., 2., 3., 4.], [2., 3., 4., 5.], [3., 4., 5., 6.], [5., 4., 3., 2.], [4., 3., 2., 1.], [0., 1., 0., 1.], [3., 2., 3., 4.], [1., 2., 3., 4.], [2., 3., 4., 5.], [3., 4., 5., 6.], [5., 4., 3., 2.], [4., 3., 2., 1.], [0., 1., 0., 1.], [3., 2., 3., 4.], [1., 2., 3., 4.], [2., 3., 4., 5.], [3., 4., 5., 6.], [5., 4., 3., 2.], [4., 3., 2., 1.], [0., 1., 0., 1.], [3., 2., 3., 4.], [1., 2., 3., 4.], [2., 3., 4., 5.], [3., 4., 5., 6.], [5., 4., 3., 2.], [4., 3., 2., 1.], [0., 1., 0., 1.], [3., 2., 3., 4.]]) X = copy(X_orig) cleaner = WindowedMinmaxScaler(window_size=20) X_complete = cleaner.transform(X) test_file = os.path.join(test_path, 'minmax_scaler.npy') X_expected = np.load(test_file) assert np.alltrue(X_complete == X_expected)
Example #5
Source File: test_measure_collection.py From scikit-multiflow with BSD 3-Clause "New" or "Revised" License | 6 votes |
def test_regression_measurements(): y_true = np.sin(range(100)) y_pred = np.sin(range(100)) + .05 measurements = RegressionMeasurements() for i in range(len(y_true)): measurements.add_result(y_true[i], y_pred[i]) expected_mse = 0.0025000000000000022 assert np.isclose(expected_mse, measurements.get_mean_square_error()) expected_ae = 0.049999999999999906 assert np.isclose(expected_ae, measurements.get_average_error()) expected_info = 'RegressionMeasurements: - sample_count: 100 - mean_square_error: 0.002500 ' \ '- mean_absolute_error: 0.050000' assert expected_info == measurements.get_info() expected_last = (-0.9992068341863537, -0.9492068341863537) assert np.alltrue(expected_last == measurements.get_last()) measurements.reset() assert measurements.sample_count == 0
Example #6
Source File: test_agrawal_generator.py From scikit-multiflow with BSD 3-Clause "New" or "Revised" License | 6 votes |
def test_agrawal_drift(test_path): stream = AGRAWALGenerator(random_state=1) X, y = stream.next_sample(10) stream.generate_drift() X_drift, y_drift = stream.next_sample(10) # Load test data corresponding to first 10 instances test_file = os.path.join(test_path, 'agrawal_stream_drift.npz') data = np.load(test_file) X_expected = data['X'] y_expected = data['y'] X = np.concatenate((X, X_drift)) y = np.concatenate((y, y_drift)) assert np.alltrue(X == X_expected) assert np.alltrue(y == y_expected)
Example #7
Source File: tests_rsp.py From NeuroKit with MIT License | 6 votes |
def test_rsp_eventrelated(): rsp, info = nk.rsp_process(nk.rsp_simulate(duration=30, random_state=42)) epochs = nk.epochs_create(rsp, events=[5000, 10000, 15000], epochs_start=-0.1, epochs_end=1.9) rsp_eventrelated = nk.rsp_eventrelated(epochs) # Test rate features assert np.alltrue(np.array(rsp_eventrelated["RSP_Rate_Min"]) < np.array(rsp_eventrelated["RSP_Rate_Mean"])) assert np.alltrue(np.array(rsp_eventrelated["RSP_Rate_Mean"]) < np.array(rsp_eventrelated["RSP_Rate_Max"])) # Test amplitude features assert np.alltrue( np.array(rsp_eventrelated["RSP_Amplitude_Min"]) < np.array(rsp_eventrelated["RSP_Amplitude_Mean"]) ) assert np.alltrue( np.array(rsp_eventrelated["RSP_Amplitude_Mean"]) < np.array(rsp_eventrelated["RSP_Amplitude_Max"]) ) assert len(rsp_eventrelated["Label"]) == 3
Example #8
Source File: tests_emg.py From NeuroKit with MIT License | 6 votes |
def test_emg_eventrelated(): emg = nk.emg_simulate(duration=20, sampling_rate=1000, burst_number=3) emg_signals, info = nk.emg_process(emg, sampling_rate=1000) epochs = nk.epochs_create( emg_signals, events=[3000, 6000, 9000], sampling_rate=1000, epochs_start=-0.1, epochs_end=1.9 ) emg_eventrelated = nk.emg_eventrelated(epochs) # Test amplitude features no_activation = np.where(emg_eventrelated["EMG_Activation"] == 0)[0][0] assert int(pd.DataFrame(emg_eventrelated.values[no_activation]).isna().sum()) == 4 assert np.alltrue( np.nansum(np.array(emg_eventrelated["EMG_Amplitude_Mean"])) < np.nansum(np.array(emg_eventrelated["EMG_Amplitude_Max"])) ) assert len(emg_eventrelated["Label"]) == 3
Example #9
Source File: test_one_hot_to_categorical.py From scikit-multiflow with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_one_hot_to_categorical(test_path): n_categories = 5 # Load test data generated using: # RandomTreeGenerator(tree_random_state=1, sample_random_state=1, # n_cat_features=n_categories, n_num_features=0) test_file = os.path.join(test_path, 'data-one-hot.npz') data = np.load(test_file) X = data['X'] y = data['y'] cat_att_idx = [[i+j for i in range(n_categories)] for j in range(0, n_categories * n_categories, n_categories)] transformer = OneHotToCategorical(categorical_list=cat_att_idx) X_decoded = transformer.transform(X) test_file = os.path.join(test_path, 'data-categorical.npy') X_expected = np.load(test_file) assert np.alltrue(X_decoded == X_expected) X_decoded = transformer.transform(X) assert np.alltrue(X_decoded == X_expected) expected_info = "OneHotToCategorical(categorical_list=[[0, 1, 2, 3, 4], [5, 6, 7, 8, 9],\n" \ " [10, 11, 12, 13, 14],\n" \ " [15, 16, 17, 18, 19],\n" \ " [20, 21, 22, 23, 24]])" assert transformer.get_info() == expected_info assert transformer._estimator_type == 'transform' transformer.fit(X=X, y=y) transformer.partial_fit_transform(X=X)
Example #10
Source File: test_function_base.py From vnpy_crypto with MIT License | 5 votes |
def test_nd(self): y1 = [[0, 0, 1], [0, 1, 1], [1, 1, 1]] assert_(not np.all(y1)) assert_array_equal(np.alltrue(y1, axis=0), [0, 0, 1]) assert_array_equal(np.alltrue(y1, axis=1), [0, 0, 1])
Example #11
Source File: tests_ecg.py From NeuroKit with MIT License | 5 votes |
def test_ecg_eventrelated(): ecg, info = nk.ecg_process(nk.ecg_simulate(duration=20)) epochs = nk.epochs_create(ecg, events=[5000, 10000, 15000], epochs_start=-0.1, epochs_end=1.9) ecg_eventrelated = nk.ecg_eventrelated(epochs) # Test rate features assert np.alltrue(np.array(ecg_eventrelated["ECG_Rate_Min"]) < np.array(ecg_eventrelated["ECG_Rate_Mean"])) assert np.alltrue(np.array(ecg_eventrelated["ECG_Rate_Mean"]) < np.array(ecg_eventrelated["ECG_Rate_Max"])) assert len(ecg_eventrelated["Label"]) == 3
Example #12
Source File: testutils.py From recruit with Apache License 2.0 | 5 votes |
def fail_if_array_equal(x, y, err_msg='', verbose=True): """ Raises an assertion error if two masked arrays are not equal elementwise. """ def compare(x, y): return (not np.alltrue(approx(x, y))) assert_array_compare(compare, x, y, err_msg=err_msg, verbose=verbose, header='Arrays are not equal')
Example #13
Source File: test_regression.py From vnpy_crypto with MIT License | 5 votes |
def test_fromiter_bytes(self): # Ticket #1058 a = np.fromiter(list(range(10)), dtype='b') b = np.fromiter(list(range(10)), dtype='B') assert_(np.alltrue(a == np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]))) assert_(np.alltrue(b == np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])))
Example #14
Source File: test_regression.py From vnpy_crypto with MIT License | 5 votes |
def test_method_args(self): # Make sure methods and functions have same default axis # keyword and arguments funcs1 = ['argmax', 'argmin', 'sum', ('product', 'prod'), ('sometrue', 'any'), ('alltrue', 'all'), 'cumsum', ('cumproduct', 'cumprod'), 'ptp', 'cumprod', 'prod', 'std', 'var', 'mean', 'round', 'min', 'max', 'argsort', 'sort'] funcs2 = ['compress', 'take', 'repeat'] for func in funcs1: arr = np.random.rand(8, 7) arr2 = arr.copy() if isinstance(func, tuple): func_meth = func[1] func = func[0] else: func_meth = func res1 = getattr(arr, func_meth)() res2 = getattr(np, func)(arr2) if res1 is None: res1 = arr if res1.dtype.kind in 'uib': assert_((res1 == res2).all(), func) else: assert_(abs(res1-res2).max() < 1e-8, func) for func in funcs2: arr1 = np.random.rand(8, 7) arr2 = np.random.rand(8, 7) res1 = None if func == 'compress': arr1 = arr1.ravel() res1 = getattr(arr2, func)(arr1) else: arr2 = (15*arr2).astype(int).ravel() if res1 is None: res1 = getattr(arr1, func)(arr2) res2 = getattr(np, func)(arr1, arr2) assert_(abs(res1-res2).max() < 1e-8, func)
Example #15
Source File: test_numeric.py From vnpy_crypto with MIT License | 5 votes |
def test_values(self): expected = np.array(list(self.makegen())) a = np.fromiter(self.makegen(), int) a20 = np.fromiter(self.makegen(), int, 20) assert_(np.alltrue(a == expected, axis=0)) assert_(np.alltrue(a20 == expected[:20], axis=0))
Example #16
Source File: optimize.py From lambda-packs with MIT License | 5 votes |
def derivative(self, x, *args): if self.jac is not None and numpy.alltrue(x == self.x): return self.jac else: self(x, *args) return self.jac
Example #17
Source File: testutils.py From lambda-packs with MIT License | 5 votes |
def fail_if_array_equal(x, y, err_msg='', verbose=True): """ Raises an assertion error if two masked arrays are not equal elementwise. """ def compare(x, y): return (not np.alltrue(approx(x, y))) assert_array_compare(compare, x, y, err_msg=err_msg, verbose=verbose, header='Arrays are not equal')
Example #18
Source File: fitpack2.py From lambda-packs with MIT License | 5 votes |
def __init__(self, x, y, t, w=None, bbox=[None]*2, k=3, ext=0, check_finite=False): if check_finite: w_finite = np.isfinite(w).all() if w is not None else True if (not np.isfinite(x).all() or not np.isfinite(y).all() or not w_finite or not np.isfinite(t).all()): raise ValueError("Input(s) must not contain NaNs or infs.") if not all(diff(x) > 0.0): raise ValueError('x must be strictly increasing') # _data == x,y,w,xb,xe,k,s,n,t,c,fp,fpint,nrdata,ier xb = bbox[0] xe = bbox[1] if xb is None: xb = x[0] if xe is None: xe = x[-1] t = concatenate(([xb]*(k+1), t, [xe]*(k+1))) n = len(t) if not alltrue(t[k+1:n-k]-t[k:n-k-1] > 0, axis=0): raise ValueError('Interior knots t must satisfy ' 'Schoenberg-Whitney conditions') if not dfitpack.fpchec(x, t, k) == 0: raise ValueError(_fpchec_error_string) data = dfitpack.fpcurfm1(x, y, k, t, w=w, xb=xb, xe=xe) self._data = data[:-3] + (None, None, data[-1]) self._reset_class() try: self.ext = _extrap_modes[ext] except KeyError: raise ValueError("Unknown extrapolation mode %s." % ext) ################ Bivariate spline ####################
Example #19
Source File: utils_sisr.py From KAIR with MIT License | 5 votes |
def zero_pad(image, shape, position='corner'): """ Extends image to a certain size with zeros Parameters ---------- image: real 2d `numpy.ndarray` Input image shape: tuple of int Desired output shape of the image position : str, optional The position of the input image in the output one: * 'corner' top-left corner (default) * 'center' centered Returns ------- padded_img: real `numpy.ndarray` The zero-padded image """ shape = np.asarray(shape, dtype=int) imshape = np.asarray(image.shape, dtype=int) if np.alltrue(imshape == shape): return image if np.any(shape <= 0): raise ValueError("ZERO_PAD: null or negative shape given") dshape = shape - imshape if np.any(dshape < 0): raise ValueError("ZERO_PAD: target size smaller than source one") pad_img = np.zeros(shape, dtype=image.dtype) idx, idy = np.indices(imshape) if position == 'center': if np.any(dshape % 2 != 0): raise ValueError("ZERO_PAD: source and target shapes " "have different parity.") offx, offy = dshape // 2 else: offx, offy = (0, 0) pad_img[idx + offx, idy + offy] = image return pad_img
Example #20
Source File: utils_old.py From vnpy_crypto with MIT License | 5 votes |
def rank(X, cond=1.0e-12): """ Return the rank of a matrix X based on its generalized inverse, not the SVD. """ X = np.asarray(X) if len(X.shape) == 2: D = scipy.linalg.svdvals(X) return int(np.add.reduce(np.greater(D / D.max(), cond).astype(np.int32))) else: return int(not np.alltrue(np.equal(X, 0.)))
Example #21
Source File: test_nonparametric.py From pingouin with GNU General Public License v3.0 | 5 votes |
def test_madmedianrule(self): """Test function madmedianrule.""" a = [1.2, 3, 4.5, 2.4, 5, 12.7, 0.4] assert np.alltrue(madmedianrule(a) == [False, False, False, False, False, True, False])
Example #22
Source File: mat_to_hdf5.py From seizure-prediction with MIT License | 5 votes |
def add_channels(self, channels): if self.channels is None: self.channels = channels else: assert np.alltrue(channels == self.channels)
Example #23
Source File: test_sam_knn.py From scikit-multiflow with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_sam_knn(): stream = SEAGenerator(random_state=1) hyperParams = {'maxSize': 1000, 'nNeighbours': 5, 'knnWeights': 'distance', 'STMSizeAdaption': 'maxACCApprox', 'use_ltm': False} learner = SAMKNNClassifier(n_neighbors=hyperParams['nNeighbours'], max_window_size=hyperParams['maxSize'], weighting=hyperParams['knnWeights'], stm_size_option=hyperParams['STMSizeAdaption'], use_ltm=hyperParams['use_ltm']) cnt = 0 max_samples = 5000 predictions = array('d') wait_samples = 100 while cnt < max_samples: X, y = stream.next_sample() # Test every n samples if (cnt % wait_samples == 0) and (cnt != 0): predictions.append(learner.predict(X)[0]) learner.partial_fit(X, y) cnt += 1 expected_predictions = array('i', [1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1]) assert np.alltrue(predictions == expected_predictions) assert type(learner.predict(X)) == np.ndarray with pytest.raises(NotImplementedError): learner.predict_proba(X)
Example #24
Source File: test_half_space_trees.py From scikit-multiflow with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_half_space_trees(test_path): stream = SEAGenerator(classification_function=0, noise_percentage=0.1, random_state=1) learner = HalfSpaceTrees(n_estimators=13, size_limit=75, anomaly_threshold=0.90, depth=10, random_state=5) cnt = 0 max_samples = 5000 y_pred = array('i') y_proba = [] wait_samples = 500 while cnt < max_samples: X, y = stream.next_sample() # Scale inputs between 0 and 1 X = X / 10 if (cnt % wait_samples == 0) and (cnt != 0): y_pred.append(learner.predict(X)[0]) y_proba.append(learner.predict_proba(X)[0]) learner.partial_fit(X) cnt += 1 expected_predictions = array('i', [1, 0, 0, 0, 1, 0, 0, 1, 0]) assert np.alltrue(y_pred == expected_predictions) test_file = os.path.join(test_path, 'test_half_space_trees.npy') expected_proba = np.load(test_file) assert np.allclose(y_proba, expected_proba)
Example #25
Source File: test_classification_performance_evaluator.py From scikit-multiflow with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_window_multi_label_classification_measurements(): y_0 = np.ones(100) y_1 = np.concatenate((np.ones(90), np.zeros(10))) y_2 = np.concatenate((np.ones(85), np.zeros(10), np.ones(5))) y_true = np.ones((100, 3)) y_pred = np.vstack((y_0, y_1, y_2)).T performance_evaluator = WindowMultiLabelClassificationPerformanceEvaluator(window_size=20) for i in range(len(y_true)): performance_evaluator.add_result(y_true[i], y_pred[i]) expected_exact_match_score = 0.25 assert np.isclose(expected_exact_match_score, performance_evaluator.exact_match_score()) expected_hamming_score = 1 - 0.33333333333333337 assert np.isclose(expected_hamming_score, performance_evaluator.hamming_score()) expected_hamming_loss_score = 0.33333333333333337 assert np.isclose(expected_hamming_loss_score, performance_evaluator.hamming_loss_score()) expected_jaccard_score = 0.6666666666666667 assert np.isclose(expected_jaccard_score, performance_evaluator.jaccard_score()) expected_info = 'WindowMultiLabelClassificationPerformanceEvaluator(n_labels=3, window_size=20, n_samples=20, ' \ 'hamming_score=0.666667, hamming_loss_score=0.333333, exact_match_score=0.250000, ' \ 'jaccard_score=0.666667)' assert expected_info == performance_evaluator.get_info() expected_last_true = (1, 1, 1) expected_last_pred = (1, 0, 1) assert np.alltrue(expected_last_true == performance_evaluator.get_last()[0]) assert np.alltrue(expected_last_pred == performance_evaluator.get_last()[1]) performance_evaluator.reset() assert performance_evaluator.n_samples == 0
Example #26
Source File: test_classification_performance_evaluator.py From scikit-multiflow with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_multi_label_classification_measurements(): y_0 = np.ones(100) y_1 = np.concatenate((np.ones(90), np.zeros(10))) y_2 = np.concatenate((np.ones(85), np.zeros(10), np.ones(5))) y_true = np.ones((100, 3)) y_pred = np.vstack((y_0, y_1, y_2)).T performance_evaluator = MultiLabelClassificationPerformanceEvaluator() for i in range(len(y_true)): performance_evaluator.add_result(y_true[i], y_pred[i]) expected_exact_match_score = 0.85 assert np.isclose(expected_exact_match_score, performance_evaluator.exact_match_score()) expected_hamming_score = 1 - 0.06666666666666667 assert np.isclose(expected_hamming_score, performance_evaluator.hamming_score()) expected_hamming_loss_score = 0.06666666666666667 assert np.isclose(expected_hamming_loss_score, performance_evaluator.hamming_loss_score()) expected_jaccard_score = 0.9333333333333332 assert np.isclose(expected_jaccard_score, performance_evaluator.jaccard_score()) expected_info = 'MultiLabelClassificationPerformanceEvaluator(n_labels=3, n_samples=100, ' \ 'hamming_score=0.933333, hamming_loss_score=0.066667, exact_match_score=0.850000, ' \ 'jaccard_score=0.933333)' assert expected_info == performance_evaluator.get_info() expected_last_true = (1, 1, 1) expected_last_pred = (1, 0, 1) assert np.alltrue(expected_last_true == performance_evaluator.get_last()[0]) assert np.alltrue(expected_last_pred == performance_evaluator.get_last()[1]) performance_evaluator.reset() assert performance_evaluator.n_samples == 0
Example #27
Source File: test_measure_collection.py From scikit-multiflow with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_multi_target_classification_measurements(): y_0 = np.ones(100) y_1 = np.concatenate((np.ones(90), np.zeros(10))) y_2 = np.concatenate((np.ones(85), np.zeros(10), np.ones(5))) y_true = np.ones((100, 3)) y_pred = np.vstack((y_0, y_1, y_2)).T measurements = MultiTargetClassificationMeasurements() for i in range(len(y_true)): measurements.add_result(y_true[i], y_pred[i]) expected_acc = 0.85 assert np.isclose(expected_acc, measurements.get_exact_match()) expected_hamming_score = 1 - 0.06666666666666667 assert np.isclose(expected_hamming_score, measurements.get_hamming_score()) expected_hamming_loss = 0.06666666666666667 assert np.isclose(expected_hamming_loss, measurements.get_hamming_loss()) expected_jaccard_index = 0.9333333333333332 assert np.isclose(expected_jaccard_index, measurements.get_j_index()) expected_total_sum = 300 assert expected_total_sum == measurements.get_total_sum() expected_info = 'MultiTargetClassificationMeasurements: - sample_count: 100 - hamming_loss: 0.066667 - ' \ 'hamming_score: 0.933333 - exact_match: 0.850000 - j_index: 0.933333' assert expected_info == measurements.get_info() expected_last_true = (1.0, 1.0, 1.0) expected_last_pred = (1.0, 0.0, 1.0) assert np.alltrue(expected_last_true == measurements.get_last()[0]) assert np.alltrue(expected_last_pred == measurements.get_last()[1]) measurements.reset() assert measurements.sample_count == 0
Example #28
Source File: test_measure_collection.py From scikit-multiflow with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_window_multi_target_classification_measurements(): y_0 = np.ones(100) y_1 = np.concatenate((np.ones(90), np.zeros(10))) y_2 = np.concatenate((np.ones(85), np.zeros(10), np.ones(5))) y_true = np.ones((100, 3)) y_pred = np.vstack((y_0, y_1, y_2)).T measurements = WindowMultiTargetClassificationMeasurements(window_size=20) for i in range(len(y_true)): measurements.add_result(y_true[i], y_pred[i]) expected_acc = 0.25 assert np.isclose(expected_acc, measurements.get_exact_match()) expected_hamming_score = 1 - 0.33333333333333337 assert np.isclose(expected_hamming_score, measurements.get_hamming_score()) expected_hamming_loss = 0.33333333333333337 assert np.isclose(expected_hamming_loss, measurements.get_hamming_loss()) expected_jaccard_index = 0.6666666666666667 assert np.isclose(expected_jaccard_index, measurements.get_j_index()) expected_total_sum = 300 assert expected_total_sum == measurements.get_total_sum() expected_info = 'WindowMultiTargetClassificationMeasurements: - sample_count: 20 - hamming_loss: 0.333333 ' \ '- hamming_score: 0.666667 - exact_match: 0.250000 - j_index: 0.666667' assert expected_info == measurements.get_info() expected_last_true = (1.0, 1.0, 1.0) expected_last_pred = (1.0, 0.0, 1.0) assert np.alltrue(expected_last_true == measurements.get_last()[0]) assert np.alltrue(expected_last_pred == measurements.get_last()[1]) measurements.reset() assert measurements.sample_count == 0
Example #29
Source File: test_classifier_chains.py From scikit-multiflow with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_classifier_chains_all(): seed = 1 X, Y = make_logical(random_state=seed) # CC cc = ClassifierChain(SGDClassifier(max_iter=100, tol=1e-3, loss='log', random_state=seed)) cc.partial_fit(X, Y) y_predicted = cc.predict(X) y_expected = [[1, 0, 1], [1, 1, 0], [0, 0, 0], [1, 1, 0]] assert np.alltrue(y_predicted == y_expected) assert type(cc.predict_proba(X)) == np.ndarray # RCC rcc = ClassifierChain(SGDClassifier(max_iter=100, tol=1e-3, loss='log', random_state=seed), order='random', random_state=seed) rcc.partial_fit(X, Y) y_predicted = rcc.predict(X) y_expected = [[1, 0, 1], [1, 1, 0], [0, 0, 0], [1, 1, 0]] assert np.alltrue(y_predicted == y_expected) # MCC mcc = MonteCarloClassifierChain(SGDClassifier(max_iter=100, tol=1e-3, loss='log', random_state=seed), M=1000) mcc.partial_fit(X, Y) y_predicted = mcc.predict(X) y_expected = [[1, 0, 1], [1, 1, 0], [0, 0, 0], [1, 1, 0]] assert np.alltrue(y_predicted == y_expected) # PCC pcc = ProbabilisticClassifierChain(SGDClassifier(max_iter=100, tol=1e-3, loss='log', random_state=seed)) pcc.partial_fit(X, Y) y_predicted = pcc.predict(X) y_expected = [[1, 0, 1], [1, 1, 0], [0, 0, 0], [1, 1, 0]] assert np.alltrue(y_predicted == y_expected)
Example #30
Source File: testutils.py From vnpy_crypto with MIT License | 5 votes |
def fail_if_array_equal(x, y, err_msg='', verbose=True): """ Raises an assertion error if two masked arrays are not equal elementwise. """ def compare(x, y): return (not np.alltrue(approx(x, y))) assert_array_compare(compare, x, y, err_msg=err_msg, verbose=verbose, header='Arrays are not equal')