Python numpy.int_() Examples
The following are 30
code examples of numpy.int_().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example #1
Source File: test_linalg.py From vnpy_crypto with MIT License | 6 votes |
def test_0_size(self): # Check that all kinds of 0-sized arrays work class ArraySubclass(np.ndarray): pass a = np.zeros((0, 1, 1), dtype=np.int_).view(ArraySubclass) res, res_v = linalg.eigh(a) assert_(res_v.dtype.type is np.float64) assert_(res.dtype.type is np.float64) assert_equal(a.shape, res_v.shape) assert_equal((0, 1), res.shape) # This is just for documentation, it might make sense to change: assert_(isinstance(a, np.ndarray)) a = np.zeros((0, 0), dtype=np.complex64).view(ArraySubclass) res, res_v = linalg.eigh(a) assert_(res_v.dtype.type is np.complex64) assert_(res.dtype.type is np.float32) assert_equal(a.shape, res_v.shape) assert_equal((0,), res.shape) # This is just for documentation, it might make sense to change: assert_(isinstance(a, np.ndarray))
Example #2
Source File: test_indexing.py From recruit with Apache License 2.0 | 6 votes |
def test_dti_custom_getitem(self): rng = pd.bdate_range(START, END, freq='C') smaller = rng[:5] exp = DatetimeIndex(rng.view(np.ndarray)[:5]) tm.assert_index_equal(smaller, exp) assert smaller.freq == rng.freq sliced = rng[::5] assert sliced.freq == CDay() * 5 fancy_indexed = rng[[4, 3, 2, 1, 0]] assert len(fancy_indexed) == 5 assert isinstance(fancy_indexed, DatetimeIndex) assert fancy_indexed.freq is None # 32-bit vs. 64-bit platforms assert rng[4] == rng[np.int_(4)]
Example #3
Source File: test_indexing.py From recruit with Apache License 2.0 | 6 votes |
def test_dti_business_getitem(self): rng = pd.bdate_range(START, END) smaller = rng[:5] exp = DatetimeIndex(rng.view(np.ndarray)[:5]) tm.assert_index_equal(smaller, exp) assert smaller.freq == rng.freq sliced = rng[::5] assert sliced.freq == BDay() * 5 fancy_indexed = rng[[4, 3, 2, 1, 0]] assert len(fancy_indexed) == 5 assert isinstance(fancy_indexed, DatetimeIndex) assert fancy_indexed.freq is None # 32-bit vs. 64-bit platforms assert rng[4] == rng[np.int_(4)]
Example #4
Source File: test_core.py From lambda-packs with MIT License | 6 votes |
def test_allclose(self): # Tests allclose on arrays a = np.random.rand(10) b = a + np.random.rand(10) * 1e-8 self.assertTrue(allclose(a, b)) # Test allclose w/ infs a[0] = np.inf self.assertTrue(not allclose(a, b)) b[0] = np.inf self.assertTrue(allclose(a, b)) # Test allclose w/ masked a = masked_array(a) a[-1] = masked self.assertTrue(allclose(a, b, masked_equal=True)) self.assertTrue(not allclose(a, b, masked_equal=False)) # Test comparison w/ scalar a *= 1e-8 a[0] = 0 self.assertTrue(allclose(a, 0, masked_equal=True)) # Test that the function works for MIN_INT integer typed arrays a = masked_array([np.iinfo(np.int_).min], dtype=np.int_) self.assertTrue(allclose(a, a))
Example #5
Source File: test_scalarmath.py From recruit with Apache License 2.0 | 6 votes |
def test_no_seq_repeat_basic_array_like(self): # Test that an array-like which does not know how to be multiplied # does not attempt sequence repeat (raise TypeError). # See also gh-7428. class ArrayLike(object): def __init__(self, arr): self.arr = arr def __array__(self): return self.arr # Test for simple ArrayLike above and memoryviews (original report) for arr_like in (ArrayLike(np.ones(3)), memoryview(np.ones(3))): assert_array_equal(arr_like * np.float32(3.), np.full(3, 3.)) assert_array_equal(np.float32(3.) * arr_like, np.full(3, 3.)) assert_array_equal(arr_like * np.int_(3), np.full(3, 3)) assert_array_equal(np.int_(3) * arr_like, np.full(3, 3))
Example #6
Source File: test_core.py From auto-alt-text-lambda-api with MIT License | 6 votes |
def test_allclose(self): # Tests allclose on arrays a = np.random.rand(10) b = a + np.random.rand(10) * 1e-8 self.assertTrue(allclose(a, b)) # Test allclose w/ infs a[0] = np.inf self.assertTrue(not allclose(a, b)) b[0] = np.inf self.assertTrue(allclose(a, b)) # Test allclose w/ masked a = masked_array(a) a[-1] = masked self.assertTrue(allclose(a, b, masked_equal=True)) self.assertTrue(not allclose(a, b, masked_equal=False)) # Test comparison w/ scalar a *= 1e-8 a[0] = 0 self.assertTrue(allclose(a, 0, masked_equal=True)) # Test that the function works for MIN_INT integer typed arrays a = masked_array([np.iinfo(np.int_).min], dtype=np.int_) self.assertTrue(allclose(a, a))
Example #7
Source File: histograms.py From lambda-packs with MIT License | 6 votes |
def _unsigned_subtract(a, b): """ Subtract two values where a >= b, and produce an unsigned result This is needed when finding the difference between the upper and lower bound of an int16 histogram """ # coerce to a single type signed_to_unsigned = { np.byte: np.ubyte, np.short: np.ushort, np.intc: np.uintc, np.int_: np.uint, np.longlong: np.ulonglong } dt = np.result_type(a, b) try: dt = signed_to_unsigned[dt.type] except KeyError: return np.subtract(a, b, dtype=dt) else: # we know the inputs are integers, and we are deliberately casting # signed to unsigned return np.subtract(a, b, casting='unsafe', dtype=dt)
Example #8
Source File: testyamlfe.py From westpa with MIT License | 6 votes |
def initialize(self): self.pcoord_ndim = 1 self.pcoord_dtype = numpy.float32 self.pcoord_len = 5 self.bin_mapper = RectilinearBinMapper([ list(numpy.arange(0.0, 10.1, 0.1)) ] ) self.bin_target_counts = numpy.empty((self.bin_mapper.nbins,), numpy.int_) self.bin_target_counts[...] = 10 self.test_variable_2 = "And I'm the second one" # YAML Front end tests # Implemented basic tests # - returns the correct system # given a system driver # - returns the correct system # given a yaml system # - returns the correct system # given both # A class to test both paths at the same time # if it works we assure we can load the driver # AND overwrite it properly
Example #9
Source File: test_linalg.py From recruit with Apache License 2.0 | 6 votes |
def test_0_size(self): # Check that all kinds of 0-sized arrays work class ArraySubclass(np.ndarray): pass a = np.zeros((0, 1, 1), dtype=np.int_).view(ArraySubclass) res, res_v = linalg.eigh(a) assert_(res_v.dtype.type is np.float64) assert_(res.dtype.type is np.float64) assert_equal(a.shape, res_v.shape) assert_equal((0, 1), res.shape) # This is just for documentation, it might make sense to change: assert_(isinstance(a, np.ndarray)) a = np.zeros((0, 0), dtype=np.complex64).view(ArraySubclass) res, res_v = linalg.eigh(a) assert_(res_v.dtype.type is np.complex64) assert_(res.dtype.type is np.float32) assert_equal(a.shape, res_v.shape) assert_equal((0,), res.shape) # This is just for documentation, it might make sense to change: assert_(isinstance(a, np.ndarray))
Example #10
Source File: test_linalg.py From recruit with Apache License 2.0 | 6 votes |
def test_0_size(self): # Check that all kinds of 0-sized arrays work class ArraySubclass(np.ndarray): pass a = np.zeros((0, 1, 1), dtype=np.int_).view(ArraySubclass) res, res_v = linalg.eig(a) assert_(res_v.dtype.type is np.float64) assert_(res.dtype.type is np.float64) assert_equal(a.shape, res_v.shape) assert_equal((0, 1), res.shape) # This is just for documentation, it might make sense to change: assert_(isinstance(a, np.ndarray)) a = np.zeros((0, 0), dtype=np.complex64).view(ArraySubclass) res, res_v = linalg.eig(a) assert_(res_v.dtype.type is np.complex64) assert_(res.dtype.type is np.complex64) assert_equal(a.shape, res_v.shape) assert_equal((0,), res.shape) # This is just for documentation, it might make sense to change: assert_(isinstance(a, np.ndarray))
Example #11
Source File: test_indexing.py From auto-alt-text-lambda-api with MIT License | 6 votes |
def test_empty_tuple_index(self): # Empty tuple index creates a view a = np.array([1, 2, 3]) assert_equal(a[()], a) assert_(a[()].base is a) a = np.array(0) assert_(isinstance(a[()], np.int_)) # Regression, it needs to fall through integer and fancy indexing # cases, so need the with statement to ignore the non-integer error. with warnings.catch_warnings(): warnings.filterwarnings('ignore', '', DeprecationWarning) a = np.array([1.]) assert_(isinstance(a[0.], np.float_)) a = np.array([np.array(1)], dtype=object) assert_(isinstance(a[0.], np.ndarray))
Example #12
Source File: lattice.py From tenpy with GNU General Public License v3.0 | 6 votes |
def boundary_conditions(self, bc): global bc_choices if bc in list(bc_choices.keys()): bc = [bc_choices[bc]] * self.dim self.bc_shift = None else: bc = list(bc) # we modify entries... self.bc_shift = np.zeros(self.dim - 1, np.int_) for i, bc_i in enumerate(bc): if isinstance(bc_i, int): if i == 0: raise ValueError("Invalid bc: first entry can't be a shift") self.bc_shift[i - 1] = bc_i bc[i] = bc_choices['periodic'] else: bc[i] = bc_choices[bc_i] if not np.any(self.bc_shift != 0): self.bc_shift = None self.bc = np.array(bc)
Example #13
Source File: histogram.py From mars with Apache License 2.0 | 6 votes |
def _unsigned_subtract(a, b): """ Subtract two values where a >= b, and produce an unsigned result This is needed when finding the difference between the upper and lower bound of an int16 histogram """ # coerce to a single type signed_to_unsigned = { np.byte: np.ubyte, np.short: np.ushort, np.intc: np.uintc, np.int_: np.uint, np.longlong: np.ulonglong } dt = np.result_type(a, b) try: dt = signed_to_unsigned[dt.type] except KeyError: # pragma: no cover return np.subtract(a, b, dtype=dt) else: # we know the inputs are integers, and we are deliberately casting # signed to unsigned return np.subtract(a, b, casting='unsafe', dtype=dt)
Example #14
Source File: test_datasource_execute.py From mars with Apache License 2.0 | 6 votes |
def testLinspaceExecution(self): a = linspace(2.0, 9.0, num=11, chunk_size=3) res = self.executor.execute_tensor(a, concat=True)[0] expected = np.linspace(2.0, 9.0, num=11) np.testing.assert_allclose(res, expected) a = linspace(2.0, 9.0, num=11, endpoint=False, chunk_size=3) res = self.executor.execute_tensor(a, concat=True)[0] expected = np.linspace(2.0, 9.0, num=11, endpoint=False) np.testing.assert_allclose(res, expected) a = linspace(2.0, 9.0, num=11, chunk_size=3, dtype=int) res = self.executor.execute_tensor(a, concat=True)[0] self.assertEqual(res.dtype, np.int_)
Example #15
Source File: test_linalg.py From vnpy_crypto with MIT License | 6 votes |
def test_0_size(self): # Check that all kinds of 0-sized arrays work class ArraySubclass(np.ndarray): pass a = np.zeros((0, 1, 1), dtype=np.int_).view(ArraySubclass) res = linalg.eigvalsh(a) assert_(res.dtype.type is np.float64) assert_equal((0, 1), res.shape) # This is just for documentation, it might make sense to change: assert_(isinstance(res, np.ndarray)) a = np.zeros((0, 0), dtype=np.complex64).view(ArraySubclass) res = linalg.eigvalsh(a) assert_(res.dtype.type is np.float32) assert_equal((0,), res.shape) # This is just for documentation, it might make sense to change: assert_(isinstance(res, np.ndarray))
Example #16
Source File: test_linalg.py From vnpy_crypto with MIT License | 6 votes |
def test_0_size(self): # Check that all kinds of 0-sized arrays work class ArraySubclass(np.ndarray): pass a = np.zeros((0, 1, 1), dtype=np.int_).view(ArraySubclass) res, res_v = linalg.eig(a) assert_(res_v.dtype.type is np.float64) assert_(res.dtype.type is np.float64) assert_equal(a.shape, res_v.shape) assert_equal((0, 1), res.shape) # This is just for documentation, it might make sense to change: assert_(isinstance(a, np.ndarray)) a = np.zeros((0, 0), dtype=np.complex64).view(ArraySubclass) res, res_v = linalg.eig(a) assert_(res_v.dtype.type is np.complex64) assert_(res.dtype.type is np.complex64) assert_equal(a.shape, res_v.shape) assert_equal((0,), res.shape) # This is just for documentation, it might make sense to change: assert_(isinstance(a, np.ndarray))
Example #17
Source File: test_core.py From vnpy_crypto with MIT License | 6 votes |
def test_allclose(self): # Tests allclose on arrays a = np.random.rand(10) b = a + np.random.rand(10) * 1e-8 assert_(allclose(a, b)) # Test allclose w/ infs a[0] = np.inf assert_(not allclose(a, b)) b[0] = np.inf assert_(allclose(a, b)) # Test allclose w/ masked a = masked_array(a) a[-1] = masked assert_(allclose(a, b, masked_equal=True)) assert_(not allclose(a, b, masked_equal=False)) # Test comparison w/ scalar a *= 1e-8 a[0] = 0 assert_(allclose(a, 0, masked_equal=True)) # Test that the function works for MIN_INT integer typed arrays a = masked_array([np.iinfo(np.int_).min], dtype=np.int_) assert_(allclose(a, a))
Example #18
Source File: image_process.py From Advanced_Lane_Lines with MIT License | 6 votes |
def draw_lane_fit(undist, warped ,Minv, left_fitx, right_fitx, ploty): # Drawing # Create an image to draw the lines on warp_zero = np.zeros_like(warped).astype(np.uint8) color_warp = np.dstack((warp_zero, warp_zero, warp_zero)) # Recast the x and y points into usable format for cv2.fillPoly() pts_left = np.array([np.transpose(np.vstack([left_fitx, ploty]))]) pts_right = np.array([np.flipud(np.transpose(np.vstack([right_fitx, ploty])))]) pts = np.hstack((pts_left, pts_right)) # Draw the lane onto the warped blank image cv2.fillPoly(color_warp, np.int_([pts]), (0,255,0)) # Warp the blank back to original image space using inverse perspective matrix(Minv) newwarp = cv2.warpPerspective(color_warp, Minv, (undist.shape[1], undist.shape[0])) # Combine the result with the original image result = cv2.addWeighted(undist, 1, newwarp, 0.3, 0) return result
Example #19
Source File: test_core.py From recruit with Apache License 2.0 | 6 votes |
def test_allclose(self): # Tests allclose on arrays a = np.random.rand(10) b = a + np.random.rand(10) * 1e-8 assert_(allclose(a, b)) # Test allclose w/ infs a[0] = np.inf assert_(not allclose(a, b)) b[0] = np.inf assert_(allclose(a, b)) # Test allclose w/ masked a = masked_array(a) a[-1] = masked assert_(allclose(a, b, masked_equal=True)) assert_(not allclose(a, b, masked_equal=False)) # Test comparison w/ scalar a *= 1e-8 a[0] = 0 assert_(allclose(a, 0, masked_equal=True)) # Test that the function works for MIN_INT integer typed arrays a = masked_array([np.iinfo(np.int_).min], dtype=np.int_) assert_(allclose(a, a))
Example #20
Source File: test_linalg.py From vnpy_crypto with MIT License | 6 votes |
def test_0_size(self): # Check that all kinds of 0-sized arrays work class ArraySubclass(np.ndarray): pass a = np.zeros((0, 1, 1), dtype=np.int_).view(ArraySubclass) res = linalg.eigvals(a) assert_(res.dtype.type is np.float64) assert_equal((0, 1), res.shape) # This is just for documentation, it might make sense to change: assert_(isinstance(res, np.ndarray)) a = np.zeros((0, 0), dtype=np.complex64).view(ArraySubclass) res = linalg.eigvals(a) assert_(res.dtype.type is np.complex64) assert_equal((0,), res.shape) # This is just for documentation, it might make sense to change: assert_(isinstance(res, np.ndarray))
Example #21
Source File: sputils.py From lambda-packs with MIT License | 5 votes |
def get_sum_dtype(dtype): """Mimic numpy's casting for np.sum""" if np.issubdtype(dtype, np.float_): return np.float_ if dtype.kind == 'u' and np.can_cast(dtype, np.uint): return np.uint if np.can_cast(dtype, np.int_): return np.int_ return dtype
Example #22
Source File: test_regression.py From auto-alt-text-lambda-api with MIT License | 5 votes |
def test_intp(self,level=rlevel): # Ticket #99 i_width = np.int_(0).nbytes*2 - 1 np.intp('0x' + 'f'*i_width, 16) self.assertRaises(OverflowError, np.intp, '0x' + 'f'*(i_width+1), 16) self.assertRaises(ValueError, np.intp, '0x1', 32) assert_equal(255, np.intp('0xFF', 16)) assert_equal(1024, np.intp(1024))
Example #23
Source File: test_datasource_execute.py From mars with Apache License 2.0 | 5 votes |
def testCreateSparseExecution(self): mat = sps.csr_matrix([[0, 0, 2], [2, 0, 0]]) t = tensor(mat, dtype='f8', chunk_size=2) res = self.executor.execute_tensor(t) self.assertIsInstance(res[0], SparseNDArray) self.assertEqual(res[0].dtype, np.float64) np.testing.assert_array_equal(res[0].toarray(), mat[..., :2].toarray()) np.testing.assert_array_equal(res[1].toarray(), mat[..., 2:].toarray()) t2 = ones_like(t, dtype='f4') res = self.executor.execute_tensor(t2) expected = sps.csr_matrix([[0, 0, 1], [1, 0, 0]]) self.assertIsInstance(res[0], SparseNDArray) self.assertEqual(res[0].dtype, np.float32) np.testing.assert_array_equal(res[0].toarray(), expected[..., :2].toarray()) np.testing.assert_array_equal(res[1].toarray(), expected[..., 2:].toarray()) t3 = tensor(np.array([[0, 0, 2], [2, 0, 0]]), chunk_size=2).tosparse() res = self.executor.execute_tensor(t3) self.assertIsInstance(res[0], SparseNDArray) self.assertEqual(res[0].dtype, np.int_) np.testing.assert_array_equal(res[0].toarray(), mat[..., :2].toarray()) np.testing.assert_array_equal(res[1].toarray(), mat[..., 2:].toarray())
Example #24
Source File: test_nanfunctions.py From lambda-packs with MIT License | 5 votes |
def test_out_dtype_error(self): for f in self.nanfuncs: for dtype in [np.bool_, np.int_, np.object_]: out = np.empty(_ndat.shape[0], dtype=dtype) assert_raises(TypeError, f, _ndat, axis=1, out=out)
Example #25
Source File: test_nanfunctions.py From lambda-packs with MIT License | 5 votes |
def test_dtype_error(self): for f in self.nanfuncs: for dtype in [np.bool_, np.int_, np.object_]: assert_raises(TypeError, f, _ndat, axis=1, dtype=dtype)
Example #26
Source File: _discrete_distns.py From lambda-packs with MIT License | 5 votes |
def _rvs(self, low, high): """An array of *size* random integers >= ``low`` and < ``high``.""" if self._size is not None: # Numpy's RandomState.randint() doesn't broadcast its arguments. # Use `broadcast_to()` to extend the shapes of low and high # up to self._size. Then we can use the numpy.vectorize'd # randint without needing to pass it a `size` argument. low = broadcast_to(low, self._size) high = broadcast_to(high, self._size) randint = np.vectorize(self._random_state.randint, otypes=[np.int_]) return randint(low, high)
Example #27
Source File: w_succ.py From westpa with MIT License | 5 votes |
def find_successful_trajs(self): pcoord_formats = {'u8': '%20d', 'i8': '%20d', 'u4': '%10d', 'i4': '%11d', 'u2': '%5d', 'i2': '%6d', 'f4': '%14.7g', 'f8': '%23.15g'} if not self.output_suppress_headers: self.output_file.write('''\ # successful (recycled) segments # column 0: iteration # column 1: seg_id # column 2: weight # column>2: final progress coordinate value ''') for n_iter in range(1, self.data_manager.current_iteration): seg_index = self.get_seg_index(n_iter) all_seg_ids = numpy.arange(len(seg_index), dtype=numpy.int_) recycled_seg_ids = all_seg_ids[seg_index[:]['endpoint_type'] == west.Segment.SEG_ENDPOINT_RECYCLED] if len(recycled_seg_ids) == 0: # Attemping to retrieve a 0-length selection from HDF5 (the pcoords below) fails continue pcoord_ds = self.get_pcoord_dataset(n_iter) pcoord_len = pcoord_ds.shape[1] pcoord_ndim = pcoord_ds.shape[2] final_pcoords = self.get_pcoord_dataset(n_iter)[recycled_seg_ids,pcoord_len-1,:] # The above HDF5 selection always returns a vector; we want a 2-d array final_pcoords.shape = (len(recycled_seg_ids),pcoord_ndim) for (ipc, seg_id) in enumerate(recycled_seg_ids): self.output_file.write('%8d %8d %20.14g' % (n_iter, seg_id, seg_index[seg_id]['weight'])) fields = [''] for field in final_pcoords[ipc]: fields.append(pcoord_formats.get(field.dtype.str[1:], '%s') % field) self.output_file.write(' '.join(fields)) self.output_file.write('\n')
Example #28
Source File: np_conserved.py From tenpy with GNU General Public License v3.0 | 5 votes |
def sparse_stats(self): """Returns a string detailing the sparse statistics.""" total = np.prod(self.shape) if total == 0: return "Array without entries, one axis is empty." nblocks = self.stored_blocks stored = self.size nonzero = np.sum([np.count_nonzero(t) for t in self._data], dtype=np.int_) bs = np.array([t.size for t in self._data], dtype=np.float) if nblocks > 0: captsparse = float(nonzero) / stored bs_min = int(np.min(bs)) bs_max = int(np.max(bs)) bs_mean = np.sum(bs) / nblocks bs_med = np.median(bs) bs_var = np.var(bs) else: captsparse = 1. bs_min = bs_max = bs_mean = bs_med = bs_var = 0 res = "{nonzero:d} of {total:d} entries (={nztotal:g}) nonzero,\n" \ "stored in {nblocks:d} blocks with {stored:d} entries.\n" \ "Captured sparsity: {captsparse:g}\n" \ "Block sizes min:{bs_min:d} mean:{bs_mean:.2f} median:{bs_med:.1f} " \ "max:{bs_max:d} var:{bs_var:.2f}" return res.format(nonzero=nonzero, total=total, nztotal=nonzero / total, nblocks=nblocks, stored=stored, captsparse=captsparse, bs_min=bs_min, bs_max=bs_max, bs_mean=bs_mean, bs_med=bs_med, bs_var=bs_var) # accessing entries =======================================================
Example #29
Source File: observable_tests.py From paramz with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_casting(self): ints = np.array(range(10)) self.assertEqual(ints.dtype, np.int_) floats = np.arange(0,5,.5) self.assertEqual(floats.dtype, np.float_) strings = np.array(list('testing')) self.assertEqual(strings.dtype.type, np.str_) self.assertEqual(ObsAr(ints).dtype, np.float_) self.assertEqual(ObsAr(floats).dtype, np.float_) self.assertEqual(ObsAr(strings).dtype.type, np.str_)
Example #30
Source File: lists_and_dicts.py From paramz with BSD 3-Clause "New" or "Revised" License | 5 votes |
def intarray_default_factory(): import numpy as np return np.int_([])