Python __builtin__.float() Examples
The following are 30
code examples of __builtin__.float().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
__builtin__
, or try the search function
.
Example #1
Source File: numerictypes.py From GraphicDesignPatternByPython with MIT License | 6 votes |
def _set_array_types(): ibytes = [1, 2, 4, 8, 16, 32, 64] fbytes = [2, 4, 8, 10, 12, 16, 32, 64] for bytes in ibytes: bits = 8*bytes _add_array_type('int', bits) _add_array_type('uint', bits) for bytes in fbytes: bits = 8*bytes _add_array_type('float', bits) _add_array_type('complex', 2*bits) _gi = dtype('p') if _gi.type not in sctypes['int']: indx = 0 sz = _gi.itemsize _lst = sctypes['int'] while (indx < len(_lst) and sz >= _lst[indx](0).itemsize): indx += 1 sctypes['int'].insert(indx, _gi.type) sctypes['uint'].insert(indx, dtype('P').type)
Example #2
Source File: numerictypes.py From lambda-packs with MIT License | 6 votes |
def _set_array_types(): ibytes = [1, 2, 4, 8, 16, 32, 64] fbytes = [2, 4, 8, 10, 12, 16, 32, 64] for bytes in ibytes: bits = 8*bytes _add_array_type('int', bits) _add_array_type('uint', bits) for bytes in fbytes: bits = 8*bytes _add_array_type('float', bits) _add_array_type('complex', 2*bits) _gi = dtype('p') if _gi.type not in sctypes['int']: indx = 0 sz = _gi.itemsize _lst = sctypes['int'] while (indx < len(_lst) and sz >= _lst[indx](0).itemsize): indx += 1 sctypes['int'].insert(indx, _gi.type) sctypes['uint'].insert(indx, dtype('P').type)
Example #3
Source File: _iotools.py From Splunking-Crime with GNU Affero General Public License v3.0 | 6 votes |
def has_nested_fields(ndtype): """ Returns whether one or several fields of a dtype are nested. Parameters ---------- ndtype : dtype Data-type of a structured array. Raises ------ AttributeError If `ndtype` does not have a `names` attribute. Examples -------- >>> dt = np.dtype([('name', 'S4'), ('x', float), ('y', float)]) >>> np.lib._iotools.has_nested_fields(dt) False """ for name in ndtype.names or (): if ndtype[name].names: return True return False
Example #4
Source File: _iotools.py From ImageFusion with MIT License | 6 votes |
def has_nested_fields(ndtype): """ Returns whether one or several fields of a dtype are nested. Parameters ---------- ndtype : dtype Data-type of a structured array. Raises ------ AttributeError If `ndtype` does not have a `names` attribute. Examples -------- >>> dt = np.dtype([('name', 'S4'), ('x', float), ('y', float)]) >>> np.lib._iotools.has_nested_fields(dt) False """ for name in ndtype.names or (): if ndtype[name].names: return True return False
Example #5
Source File: _iotools.py From elasticintel with GNU General Public License v3.0 | 6 votes |
def has_nested_fields(ndtype): """ Returns whether one or several fields of a dtype are nested. Parameters ---------- ndtype : dtype Data-type of a structured array. Raises ------ AttributeError If `ndtype` does not have a `names` attribute. Examples -------- >>> dt = np.dtype([('name', 'S4'), ('x', float), ('y', float)]) >>> np.lib._iotools.has_nested_fields(dt) False """ for name in ndtype.names or (): if ndtype[name].names: return True return False
Example #6
Source File: _iotools.py From lambda-packs with MIT License | 6 votes |
def has_nested_fields(ndtype): """ Returns whether one or several fields of a dtype are nested. Parameters ---------- ndtype : dtype Data-type of a structured array. Raises ------ AttributeError If `ndtype` does not have a `names` attribute. Examples -------- >>> dt = np.dtype([('name', 'S4'), ('x', float), ('y', float)]) >>> np.lib._iotools.has_nested_fields(dt) False """ for name in ndtype.names or (): if ndtype[name].names: return True return False
Example #7
Source File: numerictypes.py From ImageFusion with MIT License | 6 votes |
def _set_array_types(): ibytes = [1, 2, 4, 8, 16, 32, 64] fbytes = [2, 4, 8, 10, 12, 16, 32, 64] for bytes in ibytes: bits = 8*bytes _add_array_type('int', bits) _add_array_type('uint', bits) for bytes in fbytes: bits = 8*bytes _add_array_type('float', bits) _add_array_type('complex', 2*bits) _gi = dtype('p') if _gi.type not in sctypes['int']: indx = 0 sz = _gi.itemsize _lst = sctypes['int'] while (indx < len(_lst) and sz >= _lst[indx](0).itemsize): indx += 1 sctypes['int'].insert(indx, _gi.type) sctypes['uint'].insert(indx, dtype('P').type)
Example #8
Source File: _iotools.py From auto-alt-text-lambda-api with MIT License | 6 votes |
def has_nested_fields(ndtype): """ Returns whether one or several fields of a dtype are nested. Parameters ---------- ndtype : dtype Data-type of a structured array. Raises ------ AttributeError If `ndtype` does not have a `names` attribute. Examples -------- >>> dt = np.dtype([('name', 'S4'), ('x', float), ('y', float)]) >>> np.lib._iotools.has_nested_fields(dt) False """ for name in ndtype.names or (): if ndtype[name].names: return True return False
Example #9
Source File: numerictypes.py From Splunking-Crime with GNU Affero General Public License v3.0 | 6 votes |
def _set_array_types(): ibytes = [1, 2, 4, 8, 16, 32, 64] fbytes = [2, 4, 8, 10, 12, 16, 32, 64] for bytes in ibytes: bits = 8*bytes _add_array_type('int', bits) _add_array_type('uint', bits) for bytes in fbytes: bits = 8*bytes _add_array_type('float', bits) _add_array_type('complex', 2*bits) _gi = dtype('p') if _gi.type not in sctypes['int']: indx = 0 sz = _gi.itemsize _lst = sctypes['int'] while (indx < len(_lst) and sz >= _lst[indx](0).itemsize): indx += 1 sctypes['int'].insert(indx, _gi.type) sctypes['uint'].insert(indx, dtype('P').type)
Example #10
Source File: _iotools.py From lambda-packs with MIT License | 6 votes |
def has_nested_fields(ndtype): """ Returns whether one or several fields of a dtype are nested. Parameters ---------- ndtype : dtype Data-type of a structured array. Raises ------ AttributeError If `ndtype` does not have a `names` attribute. Examples -------- >>> dt = np.dtype([('name', 'S4'), ('x', float), ('y', float)]) >>> np.lib._iotools.has_nested_fields(dt) False """ for name in ndtype.names or (): if ndtype[name].names: return True return False
Example #11
Source File: numerictypes.py From auto-alt-text-lambda-api with MIT License | 6 votes |
def _set_array_types(): ibytes = [1, 2, 4, 8, 16, 32, 64] fbytes = [2, 4, 8, 10, 12, 16, 32, 64] for bytes in ibytes: bits = 8*bytes _add_array_type('int', bits) _add_array_type('uint', bits) for bytes in fbytes: bits = 8*bytes _add_array_type('float', bits) _add_array_type('complex', 2*bits) _gi = dtype('p') if _gi.type not in sctypes['int']: indx = 0 sz = _gi.itemsize _lst = sctypes['int'] while (indx < len(_lst) and sz >= _lst[indx](0).itemsize): indx += 1 sctypes['int'].insert(indx, _gi.type) sctypes['uint'].insert(indx, dtype('P').type)
Example #12
Source File: numerictypes.py From mxnet-lambda with Apache License 2.0 | 6 votes |
def _set_array_types(): ibytes = [1, 2, 4, 8, 16, 32, 64] fbytes = [2, 4, 8, 10, 12, 16, 32, 64] for bytes in ibytes: bits = 8*bytes _add_array_type('int', bits) _add_array_type('uint', bits) for bytes in fbytes: bits = 8*bytes _add_array_type('float', bits) _add_array_type('complex', 2*bits) _gi = dtype('p') if _gi.type not in sctypes['int']: indx = 0 sz = _gi.itemsize _lst = sctypes['int'] while (indx < len(_lst) and sz >= _lst[indx](0).itemsize): indx += 1 sctypes['int'].insert(indx, _gi.type) sctypes['uint'].insert(indx, dtype('P').type)
Example #13
Source File: _iotools.py From vnpy_crypto with MIT License | 6 votes |
def has_nested_fields(ndtype): """ Returns whether one or several fields of a dtype are nested. Parameters ---------- ndtype : dtype Data-type of a structured array. Raises ------ AttributeError If `ndtype` does not have a `names` attribute. Examples -------- >>> dt = np.dtype([('name', 'S4'), ('x', float), ('y', float)]) >>> np.lib._iotools.has_nested_fields(dt) False """ for name in ndtype.names or (): if ndtype[name].names: return True return False
Example #14
Source File: numerictypes.py From vnpy_crypto with MIT License | 6 votes |
def _set_array_types(): ibytes = [1, 2, 4, 8, 16, 32, 64] fbytes = [2, 4, 8, 10, 12, 16, 32, 64] for bytes in ibytes: bits = 8*bytes _add_array_type('int', bits) _add_array_type('uint', bits) for bytes in fbytes: bits = 8*bytes _add_array_type('float', bits) _add_array_type('complex', 2*bits) _gi = dtype('p') if _gi.type not in sctypes['int']: indx = 0 sz = _gi.itemsize _lst = sctypes['int'] while (indx < len(_lst) and sz >= _lst[indx](0).itemsize): indx += 1 sctypes['int'].insert(indx, _gi.type) sctypes['uint'].insert(indx, dtype('P').type)
Example #15
Source File: _iotools.py From recruit with Apache License 2.0 | 6 votes |
def has_nested_fields(ndtype): """ Returns whether one or several fields of a dtype are nested. Parameters ---------- ndtype : dtype Data-type of a structured array. Raises ------ AttributeError If `ndtype` does not have a `names` attribute. Examples -------- >>> dt = np.dtype([('name', 'S4'), ('x', float), ('y', float)]) >>> np.lib._iotools.has_nested_fields(dt) False """ for name in ndtype.names or (): if ndtype[name].names: return True return False
Example #16
Source File: _iotools.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 6 votes |
def has_nested_fields(ndtype): """ Returns whether one or several fields of a dtype are nested. Parameters ---------- ndtype : dtype Data-type of a structured array. Raises ------ AttributeError If `ndtype` does not have a `names` attribute. Examples -------- >>> dt = np.dtype([('name', 'S4'), ('x', float), ('y', float)]) >>> np.lib._iotools.has_nested_fields(dt) False """ for name in ndtype.names or (): if ndtype[name].names: return True return False
Example #17
Source File: _iotools.py From GraphicDesignPatternByPython with MIT License | 6 votes |
def has_nested_fields(ndtype): """ Returns whether one or several fields of a dtype are nested. Parameters ---------- ndtype : dtype Data-type of a structured array. Raises ------ AttributeError If `ndtype` does not have a `names` attribute. Examples -------- >>> dt = np.dtype([('name', 'S4'), ('x', float), ('y', float)]) >>> np.lib._iotools.has_nested_fields(dt) False """ for name in ndtype.names or (): if ndtype[name].names: return True return False
Example #18
Source File: _iotools.py From Fluid-Designer with GNU General Public License v3.0 | 6 votes |
def has_nested_fields(ndtype): """ Returns whether one or several fields of a dtype are nested. Parameters ---------- ndtype : dtype Data-type of a structured array. Raises ------ AttributeError If `ndtype` does not have a `names` attribute. Examples -------- >>> dt = np.dtype([('name', 'S4'), ('x', float), ('y', float)]) >>> np.lib._iotools.has_nested_fields(dt) False """ for name in ndtype.names or (): if ndtype[name].names: return True return False
Example #19
Source File: _iotools.py From Mastering-Elasticsearch-7.0 with MIT License | 6 votes |
def has_nested_fields(ndtype): """ Returns whether one or several fields of a dtype are nested. Parameters ---------- ndtype : dtype Data-type of a structured array. Raises ------ AttributeError If `ndtype` does not have a `names` attribute. Examples -------- >>> dt = np.dtype([('name', 'S4'), ('x', float), ('y', float)]) >>> np.lib._iotools.has_nested_fields(dt) False """ for name in ndtype.names or (): if ndtype[name].names: return True return False
Example #20
Source File: numerictypes.py From Fluid-Designer with GNU General Public License v3.0 | 6 votes |
def _set_array_types(): ibytes = [1, 2, 4, 8, 16, 32, 64] fbytes = [2, 4, 8, 10, 12, 16, 32, 64] for bytes in ibytes: bits = 8*bytes _add_array_type('int', bits) _add_array_type('uint', bits) for bytes in fbytes: bits = 8*bytes _add_array_type('float', bits) _add_array_type('complex', 2*bits) _gi = dtype('p') if _gi.type not in sctypes['int']: indx = 0 sz = _gi.itemsize _lst = sctypes['int'] while (indx < len(_lst) and sz >= _lst[indx](0).itemsize): indx += 1 sctypes['int'].insert(indx, _gi.type) sctypes['uint'].insert(indx, dtype('P').type)
Example #21
Source File: numerictypes.py From Computable with MIT License | 6 votes |
def _set_array_types(): ibytes = [1, 2, 4, 8, 16, 32, 64] fbytes = [2, 4, 8, 10, 12, 16, 32, 64] for bytes in ibytes: bits = 8*bytes _add_array_type('int', bits) _add_array_type('uint', bits) for bytes in fbytes: bits = 8*bytes _add_array_type('float', bits) _add_array_type('complex', 2*bits) _gi = dtype('p') if _gi.type not in sctypes['int']: indx = 0 sz = _gi.itemsize _lst = sctypes['int'] while (indx < len(_lst) and sz >= _lst[indx](0).itemsize): indx += 1 sctypes['int'].insert(indx, _gi.type) sctypes['uint'].insert(indx, dtype('P').type)
Example #22
Source File: _iotools.py From pySINDy with MIT License | 6 votes |
def has_nested_fields(ndtype): """ Returns whether one or several fields of a dtype are nested. Parameters ---------- ndtype : dtype Data-type of a structured array. Raises ------ AttributeError If `ndtype` does not have a `names` attribute. Examples -------- >>> dt = np.dtype([('name', 'S4'), ('x', float), ('y', float)]) >>> np.lib._iotools.has_nested_fields(dt) False """ for name in ndtype.names or (): if ndtype[name].names: return True return False
Example #23
Source File: _iotools.py From Computable with MIT License | 6 votes |
def has_nested_fields(ndtype): """ Returns whether one or several fields of a dtype are nested. Parameters ---------- ndtype : dtype Data-type of a structured array. Raises ------ AttributeError If `ndtype` does not have a `names` attribute. Examples -------- >>> dt = np.dtype([('name', 'S4'), ('x', float), ('y', float)]) >>> np.lib._iotools.has_nested_fields(dt) False """ for name in ndtype.names or (): if ndtype[name].names: return True return False
Example #24
Source File: numerictypes.py From pySINDy with MIT License | 6 votes |
def _set_array_types(): ibytes = [1, 2, 4, 8, 16, 32, 64] fbytes = [2, 4, 8, 10, 12, 16, 32, 64] for bytes in ibytes: bits = 8*bytes _add_array_type('int', bits) _add_array_type('uint', bits) for bytes in fbytes: bits = 8*bytes _add_array_type('float', bits) _add_array_type('complex', 2*bits) _gi = dtype('p') if _gi.type not in sctypes['int']: indx = 0 sz = _gi.itemsize _lst = sctypes['int'] while (indx < len(_lst) and sz >= _lst[indx](0).itemsize): indx += 1 sctypes['int'].insert(indx, _gi.type) sctypes['uint'].insert(indx, dtype('P').type)
Example #25
Source File: _iotools.py From mxnet-lambda with Apache License 2.0 | 6 votes |
def has_nested_fields(ndtype): """ Returns whether one or several fields of a dtype are nested. Parameters ---------- ndtype : dtype Data-type of a structured array. Raises ------ AttributeError If `ndtype` does not have a `names` attribute. Examples -------- >>> dt = np.dtype([('name', 'S4'), ('x', float), ('y', float)]) >>> np.lib._iotools.has_nested_fields(dt) False """ for name in ndtype.names or (): if ndtype[name].names: return True return False
Example #26
Source File: numerictypes.py From Splunking-Crime with GNU Affero General Public License v3.0 | 5 votes |
def issubclass_(arg1, arg2): """ Determine if a class is a subclass of a second class. `issubclass_` is equivalent to the Python built-in ``issubclass``, except that it returns False instead of raising a TypeError if one of the arguments is not a class. Parameters ---------- arg1 : class Input class. True is returned if `arg1` is a subclass of `arg2`. arg2 : class or tuple of classes. Input class. If a tuple of classes, True is returned if `arg1` is a subclass of any of the tuple elements. Returns ------- out : bool Whether `arg1` is a subclass of `arg2` or not. See Also -------- issubsctype, issubdtype, issctype Examples -------- >>> np.issubclass_(np.int32, np.int) True >>> np.issubclass_(np.int32, np.float) False """ try: return issubclass(arg1, arg2) except TypeError: return False
Example #27
Source File: numerictypes.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 5 votes |
def issubclass_(arg1, arg2): """ Determine if a class is a subclass of a second class. `issubclass_` is equivalent to the Python built-in ``issubclass``, except that it returns False instead of raising a TypeError if one of the arguments is not a class. Parameters ---------- arg1 : class Input class. True is returned if `arg1` is a subclass of `arg2`. arg2 : class or tuple of classes. Input class. If a tuple of classes, True is returned if `arg1` is a subclass of any of the tuple elements. Returns ------- out : bool Whether `arg1` is a subclass of `arg2` or not. See Also -------- issubsctype, issubdtype, issctype Examples -------- >>> np.issubclass_(np.int32, int) True >>> np.issubclass_(np.int32, float) False """ try: return issubclass(arg1, arg2) except TypeError: return False
Example #28
Source File: _iotools.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 5 votes |
def flatten_dtype(ndtype, flatten_base=False): """ Unpack a structured data-type by collapsing nested fields and/or fields with a shape. Note that the field names are lost. Parameters ---------- ndtype : dtype The datatype to collapse flatten_base : bool, optional If True, transform a field with a shape into several fields. Default is False. Examples -------- >>> dt = np.dtype([('name', 'S4'), ('x', float), ('y', float), ... ('block', int, (2, 3))]) >>> np.lib._iotools.flatten_dtype(dt) [dtype('|S4'), dtype('float64'), dtype('float64'), dtype('int32')] >>> np.lib._iotools.flatten_dtype(dt, flatten_base=True) [dtype('|S4'), dtype('float64'), dtype('float64'), dtype('int32'), dtype('int32'), dtype('int32'), dtype('int32'), dtype('int32'), dtype('int32')] """ names = ndtype.names if names is None: if flatten_base: return [ndtype.base] * int(np.prod(ndtype.shape)) return [ndtype.base] else: types = [] for field in names: info = ndtype.fields[field] flat_dt = flatten_dtype(info[0], flatten_base) types.extend(flat_dt) return types
Example #29
Source File: _iotools.py From recruit with Apache License 2.0 | 5 votes |
def flatten_dtype(ndtype, flatten_base=False): """ Unpack a structured data-type by collapsing nested fields and/or fields with a shape. Note that the field names are lost. Parameters ---------- ndtype : dtype The datatype to collapse flatten_base : bool, optional If True, transform a field with a shape into several fields. Default is False. Examples -------- >>> dt = np.dtype([('name', 'S4'), ('x', float), ('y', float), ... ('block', int, (2, 3))]) >>> np.lib._iotools.flatten_dtype(dt) [dtype('|S4'), dtype('float64'), dtype('float64'), dtype('int32')] >>> np.lib._iotools.flatten_dtype(dt, flatten_base=True) [dtype('|S4'), dtype('float64'), dtype('float64'), dtype('int32'), dtype('int32'), dtype('int32'), dtype('int32'), dtype('int32'), dtype('int32')] """ names = ndtype.names if names is None: if flatten_base: return [ndtype.base] * int(np.prod(ndtype.shape)) return [ndtype.base] else: types = [] for field in names: info = ndtype.fields[field] flat_dt = flatten_dtype(info[0], flatten_base) types.extend(flat_dt) return types
Example #30
Source File: _iotools.py From elasticintel with GNU General Public License v3.0 | 5 votes |
def flatten_dtype(ndtype, flatten_base=False): """ Unpack a structured data-type by collapsing nested fields and/or fields with a shape. Note that the field names are lost. Parameters ---------- ndtype : dtype The datatype to collapse flatten_base : bool, optional If True, transform a field with a shape into several fields. Default is False. Examples -------- >>> dt = np.dtype([('name', 'S4'), ('x', float), ('y', float), ... ('block', int, (2, 3))]) >>> np.lib._iotools.flatten_dtype(dt) [dtype('|S4'), dtype('float64'), dtype('float64'), dtype('int32')] >>> np.lib._iotools.flatten_dtype(dt, flatten_base=True) [dtype('|S4'), dtype('float64'), dtype('float64'), dtype('int32'), dtype('int32'), dtype('int32'), dtype('int32'), dtype('int32'), dtype('int32')] """ names = ndtype.names if names is None: if flatten_base: return [ndtype.base] * int(np.prod(ndtype.shape)) return [ndtype.base] else: types = [] for field in names: info = ndtype.fields[field] flat_dt = flatten_dtype(info[0], flatten_base) types.extend(flat_dt) return types