Python numpy.object() Examples
The following are 30
code examples of numpy.object().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example #1
Source File: TargetingSystem.py From poeai with MIT License | 7 votes |
def Train(self, C, A, Y, SF): ''' Train the classifier using the sample matrix A and target matrix Y ''' C.fit(A, Y) YH = np.zeros(Y.shape, dtype = np.object) for i in np.array_split(np.arange(A.shape[0]), 32): #Split up verification into chunks to prevent out of memory YH[i] = C.predict(A[i]) s1 = SF(Y, YH) print('All:{:8.6f}'.format(s1)) ''' ss = ShuffleSplit(random_state = 1151) #Use fixed state for so training can be repeated later trn, tst = next(ss.split(A, Y)) #Make train/test split mi = [8] * 1 #Maximum number of iterations at each iter YH = np.zeros((A.shape[0]), dtype = np.object) for mic in mi: #Chunk size to split dataset for CV results #C.SetMaxIter(mic) #Set the maximum number of iterations to run #C.fit(A[trn], Y[trn]) #Perform training iterations '''
Example #2
Source File: test_apply.py From recruit with Apache License 2.0 | 6 votes |
def test_apply(self, datetime_series): with np.errstate(all='ignore'): tm.assert_series_equal(datetime_series.apply(np.sqrt), np.sqrt(datetime_series)) # element-wise apply import math tm.assert_series_equal(datetime_series.apply(math.exp), np.exp(datetime_series)) # empty series s = Series(dtype=object, name='foo', index=pd.Index([], name='bar')) rs = s.apply(lambda x: x) tm.assert_series_equal(s, rs) # check all metadata (GH 9322) assert s is not rs assert s.index is rs.index assert s.dtype == rs.dtype assert s.name == rs.name # index but no data s = Series(index=[1, 2, 3]) rs = s.apply(lambda x: x) tm.assert_series_equal(s, rs)
Example #3
Source File: workspace.py From pyGSTi with Apache License 2.0 | 6 votes |
def add_unswitched(self, varname, value): """ Adds a new non-switched-value to this Switchboard. This can be convenient for attaching related non-switched data to a :class:`Switchboard`. Parameters ---------- varname : str A name for the variable being added. This name will be used to access the new variable (as either a dictionary key or as an object member). value : object The un-switched value to associate with `varname`. Returns ------- None """ super(Switchboard, self).__setitem__(varname, value)
Example #4
Source File: test_algos.py From recruit with Apache License 2.0 | 6 votes |
def test_same_object_is_in(self): # GH 22160 # there could be special treatment for nans # the user however could define a custom class # with similar behavior, then we at least should # fall back to usual python's behavior: "a in [a] == True" class LikeNan(object): def __eq__(self): return False def __hash__(self): return 0 a, b = LikeNan(), LikeNan() # same object -> True tm.assert_numpy_array_equal(algos.isin([a], [a]), np.array([True])) # different objects -> False tm.assert_numpy_array_equal(algos.isin([a], [b]), np.array([False]))
Example #5
Source File: workspace.py From pyGSTi with Apache License 2.0 | 6 votes |
def render(self, typ="html"): """ Render this Switchboard into the requested format. The returned string(s) are intended to be used to embedded a visualization of this object within a larger document. Parameters ---------- typ : {"html"} The format to render as. Currently only HTML is supported. Returns ------- dict A dictionary of strings whose keys indicate which portion of the embeddable output the value is. Keys will vary for different `typ`. For `"html"`, keys are `"html"` and `"js"` for HTML and and Javascript code, respectively. """ return self._render_base(typ, None, self.show)
Example #6
Source File: workspace.py From pyGSTi with Apache License 2.0 | 6 votes |
def render(self, typ="html"): """ Renders this object into the specifed format, specifically for embedding it within a larger document. Parameters ---------- typ : str The format to render as. Currently `"html"` is widely supported and `"latex"` is supported for tables. Returns ------- dict A dictionary of strings whose keys indicate which portion of the embeddable output the value is. Keys will vary for different `typ`. For `"html"`, keys are `"html"` and `"js"` for HTML and and Javascript code, respectively. """ raise NotImplementedError("Derived classes must implement their own render()")
Example #7
Source File: workspace.py From pyGSTi with Apache License 2.0 | 6 votes |
def load_cache(self, cachefile): """ Load this Workspace's cache from `cachefile`. Parameters ---------- cachefile : str The filename to load the cache from. Returns ------- None """ with open(cachefile, 'rb') as infile: enable_plotly_pickling() oldCache = _pickle.load(infile).cache disable_plotly_pickling() for v in oldCache.values(): if isinstance(v, WorkspaceOutput): # hasattr(v,'ws') == True for plotly dicts (why?) print('Updated {} object to set ws to self'.format(type(v))) v.ws = self self.smartCache.cache.update(oldCache)
Example #8
Source File: test_period.py From recruit with Apache License 2.0 | 6 votes |
def test_values(self): idx = pd.PeriodIndex([], freq='M') exp = np.array([], dtype=np.object) tm.assert_numpy_array_equal(idx.values, exp) tm.assert_numpy_array_equal(idx.get_values(), exp) exp = np.array([], dtype=np.int64) tm.assert_numpy_array_equal(idx._ndarray_values, exp) idx = pd.PeriodIndex(['2011-01', pd.NaT], freq='M') exp = np.array([pd.Period('2011-01', freq='M'), pd.NaT], dtype=object) tm.assert_numpy_array_equal(idx.values, exp) tm.assert_numpy_array_equal(idx.get_values(), exp) exp = np.array([492, -9223372036854775808], dtype=np.int64) tm.assert_numpy_array_equal(idx._ndarray_values, exp) idx = pd.PeriodIndex(['2011-01-01', pd.NaT], freq='D') exp = np.array([pd.Period('2011-01-01', freq='D'), pd.NaT], dtype=object) tm.assert_numpy_array_equal(idx.values, exp) tm.assert_numpy_array_equal(idx.get_values(), exp) exp = np.array([14975, -9223372036854775808], dtype=np.int64) tm.assert_numpy_array_equal(idx._ndarray_values, exp)
Example #9
Source File: mixed_variable_operator.py From pymoo with Apache License 2.0 | 6 votes |
def _do(self, problem, X, **kwargs): _, n_matings, n_var = X.shape def fun(mask, operator): return operator._do(problem, X[..., mask], **kwargs) ret = apply_mixed_variable_operation(problem, self.process, fun) # for the crossover the concatenation is different through the 3d arrays. X = np.full((self.n_offsprings, n_matings, n_var), np.nan, dtype=np.object) for i in range(len(self.process)): mask, _X = self.process[i]["mask"], ret[i] X[..., mask] = _X return X
Example #10
Source File: test_algos.py From recruit with Apache License 2.0 | 6 votes |
def test_value_counts_datetime_outofbounds(self): # GH 13663 s = Series([datetime(3000, 1, 1), datetime(5000, 1, 1), datetime(5000, 1, 1), datetime(6000, 1, 1), datetime(3000, 1, 1), datetime(3000, 1, 1)]) res = s.value_counts() exp_index = Index([datetime(3000, 1, 1), datetime(5000, 1, 1), datetime(6000, 1, 1)], dtype=object) exp = Series([3, 2, 1], index=exp_index) tm.assert_series_equal(res, exp) # GH 12424 res = pd.to_datetime(Series(['2362-01-01', np.nan]), errors='ignore') exp = Series(['2362-01-01', np.nan], dtype=object) tm.assert_series_equal(res, exp)
Example #11
Source File: test_base.py From recruit with Apache License 2.0 | 6 votes |
def test_copy_name(self): # Check that "name" argument passed at initialization is honoured # GH12309 index = self.create_index() first = index.__class__(index, copy=True, name='mario') second = first.__class__(first, copy=False) # Even though "copy=False", we want a new object. assert first is not second tm.assert_index_equal(first, second) assert first.name == 'mario' assert second.name == 'mario' s1 = Series(2, index=first) s2 = Series(3, index=second[:-1]) s3 = s1 * s2 assert s3.index.name == 'mario'
Example #12
Source File: workspace.py From pyGSTi with Apache License 2.0 | 6 votes |
def add(self, varname, dependencies): """ Adds a new switched-value to this Switchboard. Parameters ---------- varname : str A name for the variable being added. This name will be used to access the new variable (as either a dictionary key or as an object member). dependencies : list or tuple The (0-based) switch-indices specifying which switch positions the new variable is dependent on. For example, if the Switchboard has two switches, one for "amplitude" and one for "frequency", and this value is only dependent on frequency, then `dependencies` should be set to `(1,)` or `[1]`. Returns ------- None """ super(Switchboard, self).__setitem__(varname, SwitchValue(self, varname, dependencies))
Example #13
Source File: test_coercion.py From recruit with Apache License 2.0 | 6 votes |
def test_insert_index_datetimes(self, fill_val, exp_dtype): obj = pd.DatetimeIndex(['2011-01-01', '2011-01-02', '2011-01-03', '2011-01-04'], tz=fill_val.tz) assert obj.dtype == exp_dtype exp = pd.DatetimeIndex(['2011-01-01', fill_val.date(), '2011-01-02', '2011-01-03', '2011-01-04'], tz=fill_val.tz) self._assert_insert_conversion(obj, fill_val, exp, exp_dtype) msg = "Passed item and index have different timezone" if fill_val.tz: with pytest.raises(ValueError, match=msg): obj.insert(1, pd.Timestamp('2012-01-01')) with pytest.raises(ValueError, match=msg): obj.insert(1, pd.Timestamp('2012-01-01', tz='Asia/Tokyo')) msg = "cannot insert DatetimeIndex with incompatible label" with pytest.raises(TypeError, match=msg): obj.insert(1, 1) pytest.xfail("ToDo: must coerce to object")
Example #14
Source File: test_algos.py From recruit with Apache License 2.0 | 6 votes |
def test_first_nan_kept(self): # GH 22295 # create different nans from bit-patterns: bits_for_nan1 = 0xfff8000000000001 bits_for_nan2 = 0x7ff8000000000001 NAN1 = struct.unpack("d", struct.pack("=Q", bits_for_nan1))[0] NAN2 = struct.unpack("d", struct.pack("=Q", bits_for_nan2))[0] assert NAN1 != NAN1 assert NAN2 != NAN2 for el_type in [np.float64, np.object]: a = np.array([NAN1, NAN2], dtype=el_type) result = pd.unique(a) assert result.size == 1 # use bit patterns to identify which nan was kept: result_nan_bits = struct.unpack("=Q", struct.pack("d", result[0]))[0] assert result_nan_bits == bits_for_nan1
Example #15
Source File: test_analytics.py From recruit with Apache License 2.0 | 6 votes |
def test_nsmallest_nlargest(self, s_main_dtypes_split): # float, int, datetime64 (use i8), timedelts64 (same), # object that are numbers, object that are strings s = s_main_dtypes_split assert_series_equal(s.nsmallest(2), s.iloc[[2, 1]]) assert_series_equal(s.nsmallest(2, keep='last'), s.iloc[[2, 3]]) empty = s.iloc[0:0] assert_series_equal(s.nsmallest(0), empty) assert_series_equal(s.nsmallest(-1), empty) assert_series_equal(s.nlargest(0), empty) assert_series_equal(s.nlargest(-1), empty) assert_series_equal(s.nsmallest(len(s)), s.sort_values()) assert_series_equal(s.nsmallest(len(s) + 1), s.sort_values()) assert_series_equal(s.nlargest(len(s)), s.iloc[[4, 0, 1, 3, 2]]) assert_series_equal(s.nlargest(len(s) + 1), s.iloc[[4, 0, 1, 3, 2]])
Example #16
Source File: test_analytics.py From recruit with Apache License 2.0 | 6 votes |
def test_value_counts(self): # GH 12835 cats = Categorical(list('abcccb'), categories=list('cabd')) s = Series(cats, name='xxx') res = s.value_counts(sort=False) exp_index = CategoricalIndex(list('cabd'), categories=cats.categories) exp = Series([3, 1, 2, 0], name='xxx', index=exp_index) tm.assert_series_equal(res, exp) res = s.value_counts(sort=True) exp_index = CategoricalIndex(list('cbad'), categories=cats.categories) exp = Series([3, 2, 1, 0], name='xxx', index=exp_index) tm.assert_series_equal(res, exp) # check object dtype handles the Series.name as the same # (tested in test_base.py) s = Series(["a", "b", "c", "c", "c", "b"], name='xxx') res = s.value_counts() exp = Series([3, 2, 1], name='xxx', index=["c", "b", "a"]) tm.assert_series_equal(res, exp)
Example #17
Source File: test_coercion.py From recruit with Apache License 2.0 | 6 votes |
def test_where_index_datetimetz(self): fill_val = pd.Timestamp('2012-01-01', tz='US/Eastern') exp_dtype = np.object obj = pd.Index([pd.Timestamp('2011-01-01'), pd.Timestamp('2011-01-02'), pd.Timestamp('2011-01-03'), pd.Timestamp('2011-01-04')]) assert obj.dtype == 'datetime64[ns]' cond = pd.Index([True, False, True, False]) msg = ("Index\\(\\.\\.\\.\\) must be called with a collection " "of some kind") with pytest.raises(TypeError, match=msg): obj.where(cond, fill_val) values = pd.Index(pd.date_range(fill_val, periods=4)) exp = pd.Index([pd.Timestamp('2011-01-01'), pd.Timestamp('2012-01-02', tz='US/Eastern'), pd.Timestamp('2011-01-03'), pd.Timestamp('2012-01-04', tz='US/Eastern')], dtype=exp_dtype) self._assert_where_conversion(obj, cond, values, exp, exp_dtype)
Example #18
Source File: test_coercion.py From recruit with Apache License 2.0 | 6 votes |
def test_where_object(self, klass, fill_val, exp_dtype): obj = klass(list('abcd')) assert obj.dtype == np.object cond = klass([True, False, True, False]) if fill_val is True and klass is pd.Series: ret_val = 1 else: ret_val = fill_val exp = klass(['a', ret_val, 'c', ret_val]) self._assert_where_conversion(obj, cond, fill_val, exp, exp_dtype) if fill_val is True: values = klass([True, False, True, True]) else: values = klass(fill_val * x for x in [5, 6, 7, 8]) exp = klass(['a', values[1], 'c', values[3]]) self._assert_where_conversion(obj, cond, values, exp, exp_dtype)
Example #19
Source File: test_array.py From recruit with Apache License 2.0 | 6 votes |
def test_constructor_object_dtype(self): # GH 11856 arr = SparseArray(['A', 'A', np.nan, 'B'], dtype=np.object) assert arr.dtype == SparseDtype(np.object) assert np.isnan(arr.fill_value) arr = SparseArray(['A', 'A', np.nan, 'B'], dtype=np.object, fill_value='A') assert arr.dtype == SparseDtype(np.object, 'A') assert arr.fill_value == 'A' # GH 17574 data = [False, 0, 100.0, 0.0] arr = SparseArray(data, dtype=np.object, fill_value=False) assert arr.dtype == SparseDtype(np.object, False) assert arr.fill_value is False arr_expected = np.array(data, dtype=np.object) it = (type(x) == type(y) and x == y for x, y in zip(arr, arr_expected)) assert np.fromiter(it, dtype=np.bool).all()
Example #20
Source File: test_base.py From recruit with Apache License 2.0 | 6 votes |
def test_constructor_from_index_dtlike(self, cast_as_obj, index): if cast_as_obj: result = pd.Index(index.astype(object)) else: result = pd.Index(index) tm.assert_index_equal(result, index) if isinstance(index, pd.DatetimeIndex): assert result.tz == index.tz if cast_as_obj: # GH#23524 check that Index(dti, dtype=object) does not # incorrectly raise ValueError, and that nanoseconds are not # dropped index += pd.Timedelta(nanoseconds=50) result = pd.Index(index, dtype=object) assert result.dtype == np.object_ assert list(result) == list(index)
Example #21
Source File: test_base.py From recruit with Apache License 2.0 | 6 votes |
def test_constructor_from_frame_series_freq(self): # GH 6273 # create from a series, passing a freq dts = ['1-1-1990', '2-1-1990', '3-1-1990', '4-1-1990', '5-1-1990'] expected = DatetimeIndex(dts, freq='MS') df = pd.DataFrame(np.random.rand(5, 3)) df['date'] = dts result = DatetimeIndex(df['date'], freq='MS') assert df['date'].dtype == object expected.name = 'date' tm.assert_index_equal(result, expected) expected = pd.Series(dts, name='date') tm.assert_series_equal(df['date'], expected) # GH 6274 # infer freq of same freq = pd.infer_freq(df['date']) assert freq == 'MS'
Example #22
Source File: workspace.py From pyGSTi with Apache License 2.0 | 6 votes |
def __init__(self, ws, fn, *args): """ Create a new WorkspaceText object. Usually not called directly. Parameters ---------- ws : Workspace The workspace containing the new object. fn : function A text-creating function. args : various The arguments to `fn`. """ super(WorkspaceText, self).__init__(ws) self.textfn = fn self.initargs = args self.texts, self.switchboards, self.sbSwitchIndices, self.switchpos_map = \ self.ws.switchedCompute(self.textfn, *self.initargs)
Example #23
Source File: workspace.py From pyGSTi with Apache License 2.0 | 6 votes |
def __init__(self, ws, fn, *args): """ Create a new WorkspaceTable. Usually not called directly. Parameters ---------- ws : Workspace The workspace containing the new object. fn : function A table-creating function. args : various The arguments to `fn`. """ super(WorkspaceTable, self).__init__(ws) self.tablefn = fn self.initargs = args self.tables, self.switchboards, self.sbSwitchIndices, self.switchpos_map = \ self.ws.switchedCompute(self.tablefn, *self.initargs)
Example #24
Source File: test_coercion.py From recruit with Apache License 2.0 | 5 votes |
def test_setitem_index_object(self, val, exp_dtype): obj = pd.Series([1, 2, 3, 4], index=list('abcd')) assert obj.index.dtype == np.object if exp_dtype is IndexError: temp = obj.copy() with pytest.raises(exp_dtype): temp[5] = 5 else: exp_index = pd.Index(list('abcd') + [val]) self._assert_setitem_index_conversion(obj, val, exp_index, exp_dtype)
Example #25
Source File: test_coercion.py From recruit with Apache License 2.0 | 5 votes |
def test_fillna_object(self, klass, fill_val, fill_dtype): obj = klass(['a', np.nan, 'c', 'd']) assert obj.dtype == np.object exp = klass(['a', fill_val, 'c', 'd']) self._assert_fillna_conversion(obj, fill_val, exp, fill_dtype)
Example #26
Source File: test_base.py From recruit with Apache License 2.0 | 5 votes |
def test_intersect_str_dates(self): dt_dates = [datetime(2012, 2, 9), datetime(2012, 2, 22)] index1 = Index(dt_dates, dtype=object) index2 = Index(['aa'], dtype=object) result = index2.intersection(index1) expected = Index([], dtype=object) tm.assert_index_equal(result, expected)
Example #27
Source File: test_base.py From recruit with Apache License 2.0 | 5 votes |
def test_deprecated_fastpath(): with tm.assert_produces_warning(FutureWarning): idx = pd.Index( np.array(['a', 'b'], dtype=object), name='test', fastpath=True) expected = pd.Index(['a', 'b'], name='test') tm.assert_index_equal(idx, expected) with tm.assert_produces_warning(FutureWarning): idx = pd.Int64Index( np.array([1, 2, 3], dtype='int64'), name='test', fastpath=True) expected = pd.Index([1, 2, 3], name='test', dtype='int64') tm.assert_index_equal(idx, expected) with tm.assert_produces_warning(FutureWarning): idx = pd.RangeIndex(0, 5, 2, name='test', fastpath=True) expected = pd.RangeIndex(0, 5, 2, name='test') tm.assert_index_equal(idx, expected) with tm.assert_produces_warning(FutureWarning): idx = pd.CategoricalIndex(['a', 'b', 'c'], name='test', fastpath=True) expected = pd.CategoricalIndex(['a', 'b', 'c'], name='test') tm.assert_index_equal(idx, expected)
Example #28
Source File: test_coercion.py From recruit with Apache License 2.0 | 5 votes |
def test_setitem_series_object(self, val, exp_dtype): obj = pd.Series(list('abcd')) assert obj.dtype == np.object exp = pd.Series(['a', val, 'c', 'd']) self._assert_setitem_series_conversion(obj, val, exp, exp_dtype)
Example #29
Source File: test_algos.py From recruit with Apache License 2.0 | 5 votes |
def test_string_factorize(self, writable): data = np.array(['a', 'c', 'a', 'b', 'c'], dtype=object) data.setflags(write=writable) exp_labels = np.array([0, 1, 0, 2, 1], dtype=np.intp) exp_uniques = np.array(['a', 'c', 'b'], dtype=object) labels, uniques = algos.factorize(data) tm.assert_numpy_array_equal(labels, exp_labels) tm.assert_numpy_array_equal(uniques, exp_uniques)
Example #30
Source File: test_coercion.py From recruit with Apache License 2.0 | 5 votes |
def test_insert_index_object(self, insert, coerced_val, coerced_dtype): obj = pd.Index(list('abcd')) assert obj.dtype == np.object exp = pd.Index(['a', coerced_val, 'b', 'c', 'd']) self._assert_insert_conversion(obj, insert, exp, coerced_dtype)