Python model.Model() Examples
The following are 30
code examples of model.Model().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
model
, or try the search function
.
Example #1
Source File: update_cache_compatibility.py From gated-graph-transformer-network with MIT License | 6 votes |
def main(cache_dir): files_list = list(os.listdir(cache_dir)) for file in files_list: full_filename = os.path.join(cache_dir, file) if os.path.isfile(full_filename): print("Processing {}".format(full_filename)) m, stored_kwargs = pickle.load(open(full_filename, 'rb')) updated_kwargs = util.get_compatible_kwargs(model.Model, stored_kwargs) model_hash = util.object_hash(updated_kwargs) print("New hash -> " + model_hash) model_filename = os.path.join(cache_dir, "model_{}.p".format(model_hash)) sys.setrecursionlimit(100000) pickle.dump((m,updated_kwargs), open(model_filename,'wb'), protocol=pickle.HIGHEST_PROTOCOL) os.remove(full_filename)
Example #2
Source File: eval.py From SlowFast-Network-pytorch with MIT License | 6 votes |
def _eval(path_to_checkpoint, backbone_name, path_to_results_dir): dataset = AVA_video(EvalConfig.VAL_DATA) evaluator = Evaluator(dataset, path_to_results_dir) Log.i('Found {:d} samples'.format(len(dataset))) backbone = BackboneBase.from_name(backbone_name)() model = Model(backbone, dataset.num_classes(), pooler_mode=Config.POOLER_MODE, anchor_ratios=Config.ANCHOR_RATIOS, anchor_sizes=Config.ANCHOR_SIZES, rpn_pre_nms_top_n=TrainConfig.RPN_PRE_NMS_TOP_N, rpn_post_nms_top_n=TrainConfig.RPN_POST_NMS_TOP_N).cuda() model.load(path_to_checkpoint) print("load from:",path_to_checkpoint) Log.i('Start evaluating with 1 GPU (1 batch per GPU)') mean_ap, detail = evaluator.evaluate(model) Log.i('Done') Log.i('mean AP = {:.4f}'.format(mean_ap)) Log.i('\n' + detail)
Example #3
Source File: sample.py From char-rnn-tensorflow with MIT License | 6 votes |
def sample(args): with open(os.path.join(args.save_dir, 'config.pkl'), 'rb') as f: saved_args = cPickle.load(f) with open(os.path.join(args.save_dir, 'chars_vocab.pkl'), 'rb') as f: chars, vocab = cPickle.load(f) #Use most frequent char if no prime is given if args.prime == '': args.prime = chars[0] model = Model(saved_args, training=False) with tf.Session() as sess: tf.global_variables_initializer().run() saver = tf.train.Saver(tf.global_variables()) ckpt = tf.train.get_checkpoint_state(args.save_dir) if ckpt and ckpt.model_checkpoint_path: saver.restore(sess, ckpt.model_checkpoint_path) data = model.sample(sess, chars, vocab, args.n, args.prime, args.sample).encode('utf-8') print(data.decode("utf-8"))
Example #4
Source File: train.py From DNA-GAN with MIT License | 6 votes |
def main(): parser = argparse.ArgumentParser(description='test', formatter_class=argparse.RawTextHelpFormatter) parser.add_argument( '-a', '--attributes', nargs='+', type=str, help='Specify attribute name for training. \nAll attributes can be found in list_attr_celeba.txt' ) parser.add_argument( '-g', '--gpu', default='0', type=str, help='Specify GPU id. \ndefault: %(default)s. \nUse comma to seperate several ids, for example: 0,1' ) args = parser.parse_args() celebA = Dataset(args.attributes) DNA_GAN = Model(args.attributes, is_train=True) run(config, celebA, DNA_GAN, gpu=args.gpu)
Example #5
Source File: train.py From multi_task_test with Apache License 2.0 | 6 votes |
def main(_): dataset = get_record_dataset(FLAGS.record_path) data_provider = slim.dataset_data_provider.DatasetDataProvider(dataset) image, label = data_provider.get(['image', 'label']) inputs, labels = tf.train.batch([image, label], batch_size=64, allow_smaller_final_batch=True) cls_model = model.Model(is_training=True) preprocessed_inputs = cls_model.preprocess(inputs) prediction_dict = cls_model.predict(preprocessed_inputs) loss_dict = cls_model.loss(prediction_dict, labels) loss = loss_dict['loss'] postprocessed_dict = cls_model.postprocess(prediction_dict) acc = cls_model.accuracy(postprocessed_dict, labels) tf.summary.scalar('loss', loss) tf.summary.scalar('accuracy', acc) optimizer = tf.train.MomentumOptimizer(learning_rate=0.01, momentum=0.9) train_op = slim.learning.create_train_op(loss, optimizer, summarize_gradients=True) slim.learning.train(train_op=train_op, logdir=FLAGS.logdir, save_summaries_secs=20, save_interval_secs=120)
Example #6
Source File: main.py From dl-uncertainty with MIT License | 6 votes |
def main(_): with tf.device(FLAGS.device): model_save_path = 'model/'+FLAGS.model_save_path # create directory if it does not exist if not tf.gfile.Exists(model_save_path): tf.gfile.MakeDirs(model_save_path) log_dir = 'logs/'+ model_save_path model = Model(learning_rate=0.0003, mode=FLAGS.mode) solver = Solver(model, model_save_path=model_save_path, log_dir=log_dir) # create directory if it does not exist if not tf.gfile.Exists(model_save_path): tf.gfile.MakeDirs(model_save_path) if FLAGS.mode == 'train': solver.train() elif FLAGS.mode == 'test': solver.test(checkpoint=FLAGS.checkpoint) else: print 'Unrecognized mode.'
Example #7
Source File: eval.py From easy-faster-rcnn.pytorch with MIT License | 6 votes |
def _eval(path_to_checkpoint: str, dataset_name: str, backbone_name: str, path_to_data_dir: str, path_to_results_dir: str): dataset = DatasetBase.from_name(dataset_name)(path_to_data_dir, DatasetBase.Mode.EVAL, Config.IMAGE_MIN_SIDE, Config.IMAGE_MAX_SIDE) evaluator = Evaluator(dataset, path_to_data_dir, path_to_results_dir) Log.i('Found {:d} samples'.format(len(dataset))) backbone = BackboneBase.from_name(backbone_name)(pretrained=False) model = Model(backbone, dataset.num_classes(), pooler_mode=Config.POOLER_MODE, anchor_ratios=Config.ANCHOR_RATIOS, anchor_sizes=Config.ANCHOR_SIZES, rpn_pre_nms_top_n=Config.RPN_PRE_NMS_TOP_N, rpn_post_nms_top_n=Config.RPN_POST_NMS_TOP_N).cuda() model.load(path_to_checkpoint) Log.i('Start evaluating with 1 GPU (1 batch per GPU)') mean_ap, detail = evaluator.evaluate(model) Log.i('Done') Log.i('mean AP = {:.4f}'.format(mean_ap)) Log.i('\n' + detail)
Example #8
Source File: inference.py From nslt with Apache License 2.0 | 6 votes |
def inference(ckpt, inference_input_file, inference_output_file, hparams, num_workers=1, jobid=0, scope=None, single_cell_fn=None): """Perform translation.""" if hparams.inference_indices: assert num_workers == 1 if not hparams.attention: model_creator = nmt_model.Model elif hparams.attention_architecture == "standard": model_creator = attention_model.AttentionModel elif hparams.attention_architecture in ["gnmt", "gnmt_v2"]: model_creator = gnmt_model.GNMTModel else: raise ValueError("Unknown model architecture") infer_model = create_infer_model(model_creator, hparams, scope, single_cell_fn) if num_workers == 1: single_worker_inference(infer_model, ckpt, inference_input_file, inference_output_file, hparams) else: multi_worker_inference(infer_model, ckpt, inference_input_file, inference_output_file, hparams, num_workers=num_workers, jobid=jobid)
Example #9
Source File: export_inference_graph.py From finetune_classification with Apache License 2.0 | 6 votes |
def main(_): # Specify which gpu to be used os.environ["CUDA_VISIBLE_DEVICES"] = '1' cls_model = model.Model(is_training=False, num_classes=61) if FLAGS.input_shape: input_shape = [ int(dim) if dim != -1 else None for dim in FLAGS.input_shape.split(',') ] else: input_shape = [None, None, None, 3] exporter.export_inference_graph(FLAGS.input_type, cls_model, FLAGS.trained_checkpoint_prefix, FLAGS.output_directory, input_shape)
Example #10
Source File: main.py From dl-uncertainty with MIT License | 6 votes |
def main(_): with tf.device(FLAGS.device): model_save_path = 'model/'+FLAGS.model_save_path # create directory if it does not exist if not tf.gfile.Exists(model_save_path): tf.gfile.MakeDirs(model_save_path) log_dir = 'logs/'+ model_save_path model = Model(learning_rate=0.0003, mode=FLAGS.mode) solver = Solver(model, model_save_path=model_save_path, log_dir=log_dir) # create directory if it does not exist if not tf.gfile.Exists(model_save_path): tf.gfile.MakeDirs(model_save_path) if FLAGS.mode == 'train': solver.train() elif FLAGS.mode == 'test': solver.test(checkpoint=FLAGS.checkpoint) else: print 'Unrecognized mode.'
Example #11
Source File: train.py From Reinforce-Paraphrase-Generation with MIT License | 6 votes |
def setup_train(self, model_file_path=None): self.model = Model(model_file_path) params = list(self.model.encoder.parameters()) + list(self.model.decoder.parameters()) + \ list(self.model.reduce_state.parameters()) initial_lr = config.lr_coverage if config.is_coverage else config.lr if config.mode == 'MLE': self.optimizer = Adagrad(params, lr=0.15, initial_accumulator_value=0.1) else: self.optimizer = Adam(params, lr=initial_lr) start_iter, start_loss = 0, 0 if model_file_path is not None: state = torch.load(model_file_path, map_location= lambda storage, location: storage) start_iter = state['iter'] start_loss = state['current_loss'] return start_iter, start_loss
Example #12
Source File: train.py From torch-light with MIT License | 6 votes |
def train(): model.train() total_loss = 0 for word, char, label in tqdm(training_data, mininterval=1, desc='Train Processing', leave=False): optimizer.zero_grad() loss, _ = model(word, char, label) loss.backward() optimizer.step() optimizer.update_learning_rate() total_loss += loss.data return total_loss / training_data._stop_step # ############################################################################## # Save Model # ##############################################################################
Example #13
Source File: transform.py From torch-light with MIT License | 5 votes |
def __init__(self, model_source="translate_Pre-train.pt"): model_source = torch.load( model_source, map_location=lambda storage, loc: storage) self.src_dict = model_source["dict"]["src"] self.idx2word = {v: k for k, v in model_source["dict"]["tgt"].items()} self.args = args = model_source["settings"] args.use_cuda = False model = Model(args) model.load_state_dict(model_source['model']) model = model.cpu() self.model = model.eval()
Example #14
Source File: eval.py From Reinforce-Paraphrase-Generation with MIT License | 5 votes |
def __init__(self, model_file_path): self.vocab = Vocab(config.vocab_path, config.vocab_size) self.batcher = Batcher(config.eval_data_path, self.vocab, mode='eval', batch_size=config.batch_size, single_pass=True) self.model_file_path = model_file_path time.sleep(5) self.model = Model(model_file_path, is_eval=True)
Example #15
Source File: controller.py From Tkinter-GUI-Application-Development-Blueprints-Second-Edition with MIT License | 5 votes |
def init_model(self): self.model = model.Model()
Example #16
Source File: train.py From combine-FEVER-NSMN with MIT License | 5 votes |
def initialize(self): self.logger = cfg.get_logger() self.info(repr(cfg)) device = torch.device('cuda' if torch.cuda.is_available() \ else 'cpu', index=0) device_num = -1 if device.type == 'cpu' else 0 self.info(f'Use {device}') ######################################################################## # Load data ######################################################################## dev_upstream_file = config.RESULT_PATH / \ "doc_retri_bls/docretri.basic.nopageview/dev.jsonl" train_upstream_file = config.RESULT_PATH / \ "doc_retri_bls/docretri.basic.nopageview/train.jsonl" dev_corpus = DocIDCorpus(dev_upstream_file, train=False) train_corpus = DocIDCorpus(train_upstream_file, train=True) dev_corpus.initialize() train_corpus.initialize_from_exist_corpus(dev_corpus) ######################################################################## # Build the model ######################################################################## model = Model(weight=dev_corpus.weight_dict['glove.840B.300d'], vocab_size=dev_corpus.vocab.get_vocab_size('tokens'), embedding_dim=300, max_l=160, num_of_class=2) model.to(device) criterion = model.get_criterion() optimizer = optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=cfg.start_lr) self.device_num = device_num self.train_corpus = train_corpus self.dev_corpus = dev_corpus self.model = model self.criterion = criterion self.optimizer = optimizer self.best_dev = -1
Example #17
Source File: controller.py From Tkinter-GUI-Application-Development-Blueprints-Second-Edition with MIT License | 5 votes |
def init_model(self): self.model = model.Model()
Example #18
Source File: controller.py From Tkinter-GUI-Application-Development-Blueprints-Second-Edition with MIT License | 5 votes |
def init_model(self): self.model = model.Model()
Example #19
Source File: controller.py From Tkinter-GUI-Application-Development-Blueprints-Second-Edition with MIT License | 5 votes |
def init_model(self): self.model = model.Model()
Example #20
Source File: controller.py From Tkinter-GUI-Application-Development-Blueprints-Second-Edition with MIT License | 5 votes |
def init_model(self): self.model = model.Model()
Example #21
Source File: controller.py From Tkinter-GUI-Application-Development-Blueprints-Second-Edition with MIT License | 5 votes |
def init_model(self): self.model = model.Model()
Example #22
Source File: common_flags.py From Gun-Detector with Apache License 2.0 | 5 votes |
def create_model(*args, **kwargs): ocr_model = model.Model(mparams=create_mparams(), *args, **kwargs) return ocr_model
Example #23
Source File: model_test.py From Gun-Detector with Apache License 2.0 | 5 votes |
def create_model(self, charset=None): return model.Model( self.num_char_classes, self.seq_length, num_views=4, null_code=62, charset=charset)
Example #24
Source File: main.py From QANet with MIT License | 5 votes |
def demo(config): with open(config.word_emb_file, "r") as fh: word_mat = np.array(json.load(fh), dtype=np.float32) with open(config.char_emb_file, "r") as fh: char_mat = np.array(json.load(fh), dtype=np.float32) with open(config.test_meta, "r") as fh: meta = json.load(fh) model = Model(config, None, word_mat, char_mat, trainable=False, demo = True) demo = Demo(model, config)
Example #25
Source File: chatbot.py From deepQA with Apache License 2.0 | 5 votes |
def _saveSession(self, sess): """ Save the model parameters and the variables Args: sess: the current session """ tqdm.write('Checkpoint reached: saving model (don\'t stop the run)...') self.saveModelParams() model_name = self._getModelName() with open(model_name, 'w') as f: # HACK: Simulate the old model existance to avoid rewriting the file parser f.write('This file is used internally by DeepQA to check the model existance. Please do not remove.\n') self.saver.save(sess, model_name) # TODO: Put a limit size (ex: 3GB for the modelDir) tqdm.write('Model saved.')
Example #26
Source File: chatbot.py From deepQA with Apache License 2.0 | 5 votes |
def __init__(self): """ """ # Model/dataset parameters self.args = None # Task specific object self.textData = None # Dataset self.model = None # Sequence to sequence model # Tensorflow utilities for convenience saving/logging self.writer = None self.saver = None self.modelDir = '' # Where the model is saved self.globStep = 0 # Represent the number of iteration for the current model # TensorFlow main session (we keep track for the daemon) self.sess = None # Filename and directories constants self.MODEL_DIR_BASE = 'save/model' self.MODEL_NAME_BASE = 'model' self.MODEL_EXT = '.ckpt' self.CONFIG_FILENAME = 'params.ini' self.CONFIG_VERSION = '0.5' self.TEST_IN_NAME = 'data/test/samples.txt' self.TEST_OUT_SUFFIX = '_predictions.txt' self.SENTENCES_PREFIX = ['Q: ', 'A: ']
Example #27
Source File: inference.py From parallax with Apache License 2.0 | 5 votes |
def inference(ckpt, inference_input_file, inference_output_file, hparams, num_workers=1, jobid=0, scope=None): """Perform translation.""" if hparams.inference_indices: assert num_workers == 1 if not hparams.attention: model_creator = nmt_model.Model elif hparams.attention_architecture == "standard": model_creator = attention_model.AttentionModel elif hparams.attention_architecture in ["gnmt", "gnmt_v2"]: model_creator = gnmt_model.GNMTModel else: raise ValueError("Unknown model architecture") infer_model = model_helper.create_infer_model(model_creator, hparams, scope) if num_workers == 1: single_worker_inference( infer_model, ckpt, inference_input_file, inference_output_file, hparams) else: multi_worker_inference( infer_model, ckpt, inference_input_file, inference_output_file, hparams, num_workers=num_workers, jobid=jobid)
Example #28
Source File: main.py From dl-uncertainty with MIT License | 5 votes |
def main(_): with tf.device(FLAGS.device): model_save_path = 'model/'+FLAGS.model_save_path # create directory if it does not exist if not tf.gfile.Exists(model_save_path): tf.gfile.MakeDirs(model_save_path) log_dir = 'logs/'+ model_save_path if FLAGS.mode == 'test': checkpoint = model_save_path+'/model' model = Model(learning_rate=0.0003, mode=FLAGS.mode) solver = Solver(model, model_save_path=model_save_path, log_dir=log_dir, training_size=int(FLAGS.training_size) ) # create directory if it does not exist if not tf.gfile.Exists(model_save_path): tf.gfile.MakeDirs(model_save_path) if FLAGS.mode == 'train': solver.train() elif FLAGS.mode == 'test': solver.test(checkpoint=checkpoint) else: print 'Unrecognized mode.'
Example #29
Source File: trainer.py From yolo_v2 with Apache License 2.0 | 5 votes |
def get_model(self): cls = model.Model return cls(self.env_spec, self.global_step, target_network_lag=self.target_network_lag, sample_from=self.sample_from, get_policy=self.get_policy, get_baseline=self.get_baseline, get_objective=self.get_objective, get_trust_region_p_opt=self.get_trust_region_p_opt, get_value_opt=self.get_value_opt)
Example #30
Source File: train.py From yolo_v2 with Apache License 2.0 | 5 votes |
def get_model(self): # vocab size is the number of distinct values that # could go into the memory key-value storage vocab_size = self.episode_width * self.batch_size return model.Model( self.input_dim, self.output_dim, self.rep_dim, self.memory_size, vocab_size, use_lsh=self.use_lsh)