Python numpy.conjugate() Examples
The following are 30
code examples of numpy.conjugate().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example #1
Source File: test_core.py From auto-alt-text-lambda-api with MIT License | 6 votes |
def test_generic_methods(self): # Tests some MaskedArray methods. a = array([1, 3, 2]) assert_equal(a.any(), a._data.any()) assert_equal(a.all(), a._data.all()) assert_equal(a.argmax(), a._data.argmax()) assert_equal(a.argmin(), a._data.argmin()) assert_equal(a.choose(0, 1, 2, 3, 4), a._data.choose(0, 1, 2, 3, 4)) assert_equal(a.compress([1, 0, 1]), a._data.compress([1, 0, 1])) assert_equal(a.conj(), a._data.conj()) assert_equal(a.conjugate(), a._data.conjugate()) m = array([[1, 2], [3, 4]]) assert_equal(m.diagonal(), m._data.diagonal()) assert_equal(a.sum(), a._data.sum()) assert_equal(a.take([1, 2]), a._data.take([1, 2])) assert_equal(m.transpose(), m._data.transpose())
Example #2
Source File: optools.py From pyGSTi with Apache License 2.0 | 6 votes |
def unitary_to_process_mx(U): """ Compute the super-operator which acts on (row)-vectorized density matrices from a unitary operator (matrix) U which acts on state vectors. This super-operator is given by the tensor product of U and conjugate(U), i.e. kron(U,U.conj). Parameters ---------- U : numpy array The unitary matrix which acts on state vectors. Returns ------- numpy array The super-operator process matrix. """ # U -> kron(U,Uc) since U rho U_dag -> kron(U,Uc) # since AXB --row-vectorize--> kron(A,B.T)*vec(X) return _np.kron(U, _np.conjugate(U))
Example #3
Source File: optools.py From pyGSTi with Apache License 2.0 | 6 votes |
def state_to_dmvec(psi): """ Compute the vectorized density matrix which acts as the state `psi`. This is just the outer product map |psi> => |psi><psi| with the output flattened, i.e. `dot(psi, conjugate(psi).T)`. Parameters ---------- psi : numpy array The state vector. Returns ------- numpy array The vectorized density matrix. """ psi = psi.reshape((psi.size, 1)) # convert to (N,1) shape if necessary dm = _np.dot(psi, _np.conjugate(psi.T)) return dm.flatten()
Example #4
Source File: test_old_ma.py From vnpy_crypto with MIT License | 6 votes |
def test_testArrayMethods(self): a = array([1, 3, 2]) assert_(eq(a.any(), a._data.any())) assert_(eq(a.all(), a._data.all())) assert_(eq(a.argmax(), a._data.argmax())) assert_(eq(a.argmin(), a._data.argmin())) assert_(eq(a.choose(0, 1, 2, 3, 4), a._data.choose(0, 1, 2, 3, 4))) assert_(eq(a.compress([1, 0, 1]), a._data.compress([1, 0, 1]))) assert_(eq(a.conj(), a._data.conj())) assert_(eq(a.conjugate(), a._data.conjugate())) m = array([[1, 2], [3, 4]]) assert_(eq(m.diagonal(), m._data.diagonal())) assert_(eq(a.sum(), a._data.sum())) assert_(eq(a.take([1, 2]), a._data.take([1, 2]))) assert_(eq(m.transpose(), m._data.transpose()))
Example #5
Source File: test_old_ma.py From recruit with Apache License 2.0 | 6 votes |
def test_testArrayMethods(self): a = array([1, 3, 2]) assert_(eq(a.any(), a._data.any())) assert_(eq(a.all(), a._data.all())) assert_(eq(a.argmax(), a._data.argmax())) assert_(eq(a.argmin(), a._data.argmin())) assert_(eq(a.choose(0, 1, 2, 3, 4), a._data.choose(0, 1, 2, 3, 4))) assert_(eq(a.compress([1, 0, 1]), a._data.compress([1, 0, 1]))) assert_(eq(a.conj(), a._data.conj())) assert_(eq(a.conjugate(), a._data.conjugate())) m = array([[1, 2], [3, 4]]) assert_(eq(m.diagonal(), m._data.diagonal())) assert_(eq(a.sum(), a._data.sum())) assert_(eq(a.take([1, 2]), a._data.take([1, 2]))) assert_(eq(m.transpose(), m._data.transpose()))
Example #6
Source File: test_polynomial.py From vnpy_crypto with MIT License | 6 votes |
def test_poly(self): assert_array_almost_equal(np.poly([3, -np.sqrt(2), np.sqrt(2)]), [1, -3, -2, 6]) # From matlab docs A = [[1, 2, 3], [4, 5, 6], [7, 8, 0]] assert_array_almost_equal(np.poly(A), [1, -6, -72, -27]) # Should produce real output for perfect conjugates assert_(np.isrealobj(np.poly([+1.082j, +2.613j, -2.613j, -1.082j]))) assert_(np.isrealobj(np.poly([0+1j, -0+-1j, 1+2j, 1-2j, 1.+3.5j, 1-3.5j]))) assert_(np.isrealobj(np.poly([1j, -1j, 1+2j, 1-2j, 1+3j, 1-3.j]))) assert_(np.isrealobj(np.poly([1j, -1j, 1+2j, 1-2j]))) assert_(np.isrealobj(np.poly([1j, -1j, 2j, -2j]))) assert_(np.isrealobj(np.poly([1j, -1j]))) assert_(np.isrealobj(np.poly([1, -1]))) assert_(np.iscomplexobj(np.poly([1j, -1.0000001j]))) np.random.seed(42) a = np.random.randn(100) + 1j*np.random.randn(100) assert_(np.isrealobj(np.poly(np.concatenate((a, np.conjugate(a))))))
Example #7
Source File: matrixtools.py From pyGSTi with Apache License 2.0 | 6 votes |
def to_unitary(scaled_unitary): """ Compute the scaling factor required to turn a scalar multiple of a unitary matrix to a unitary matrix. Parameters ---------- scaled_unitary : ndarray A scaled unitary matrix Returns ------- scale : float unitary : ndarray Such that `scale * unitary == scaled_unitary`. """ scaled_identity = _np.dot(scaled_unitary, _np.conjugate(scaled_unitary.T)) scale = _np.sqrt(scaled_identity[0, 0]) assert(_np.allclose(scaled_identity / (scale**2), _np.identity(scaled_identity.shape[0], 'd'))), \ "Given `scaled_unitary` does not appear to be a scaled unitary matrix!" return scale, (scaled_unitary / scale)
Example #8
Source File: test_core.py From vnpy_crypto with MIT License | 6 votes |
def test_generic_methods(self): # Tests some MaskedArray methods. a = array([1, 3, 2]) assert_equal(a.any(), a._data.any()) assert_equal(a.all(), a._data.all()) assert_equal(a.argmax(), a._data.argmax()) assert_equal(a.argmin(), a._data.argmin()) assert_equal(a.choose(0, 1, 2, 3, 4), a._data.choose(0, 1, 2, 3, 4)) assert_equal(a.compress([1, 0, 1]), a._data.compress([1, 0, 1])) assert_equal(a.conj(), a._data.conj()) assert_equal(a.conjugate(), a._data.conjugate()) m = array([[1, 2], [3, 4]]) assert_equal(m.diagonal(), m._data.diagonal()) assert_equal(a.sum(), a._data.sum()) assert_equal(a.take([1, 2]), a._data.take([1, 2])) assert_equal(m.transpose(), m._data.transpose())
Example #9
Source File: matrixtools.py From pyGSTi with Apache License 2.0 | 6 votes |
def is_hermitian(mx, TOL=1e-9): """ Test whether mx is a hermitian matrix. Parameters ---------- mx : numpy array Matrix to test. TOL : float, optional Tolerance on absolute magitude of elements. Returns ------- bool True if mx is hermitian, otherwise False. """ (m, n) = mx.shape for i in range(m): if abs(mx[i, i].imag) > TOL: return False for j in range(i + 1, n): if abs(mx[i, j] - mx[j, i].conjugate()) > TOL: return False return True
Example #10
Source File: test_core.py From recruit with Apache License 2.0 | 6 votes |
def test_generic_methods(self): # Tests some MaskedArray methods. a = array([1, 3, 2]) assert_equal(a.any(), a._data.any()) assert_equal(a.all(), a._data.all()) assert_equal(a.argmax(), a._data.argmax()) assert_equal(a.argmin(), a._data.argmin()) assert_equal(a.choose(0, 1, 2, 3, 4), a._data.choose(0, 1, 2, 3, 4)) assert_equal(a.compress([1, 0, 1]), a._data.compress([1, 0, 1])) assert_equal(a.conj(), a._data.conj()) assert_equal(a.conjugate(), a._data.conjugate()) m = array([[1, 2], [3, 4]]) assert_equal(m.diagonal(), m._data.diagonal()) assert_equal(a.sum(), a._data.sum()) assert_equal(a.take([1, 2]), a._data.take([1, 2])) assert_equal(m.transpose(), m._data.transpose())
Example #11
Source File: test_old_ma.py From auto-alt-text-lambda-api with MIT License | 6 votes |
def test_testArrayMethods(self): a = array([1, 3, 2]) self.assertTrue(eq(a.any(), a._data.any())) self.assertTrue(eq(a.all(), a._data.all())) self.assertTrue(eq(a.argmax(), a._data.argmax())) self.assertTrue(eq(a.argmin(), a._data.argmin())) self.assertTrue(eq(a.choose(0, 1, 2, 3, 4), a._data.choose(0, 1, 2, 3, 4))) self.assertTrue(eq(a.compress([1, 0, 1]), a._data.compress([1, 0, 1]))) self.assertTrue(eq(a.conj(), a._data.conj())) self.assertTrue(eq(a.conjugate(), a._data.conjugate())) m = array([[1, 2], [3, 4]]) self.assertTrue(eq(m.diagonal(), m._data.diagonal())) self.assertTrue(eq(a.sum(), a._data.sum())) self.assertTrue(eq(a.take([1, 2]), a._data.take([1, 2]))) self.assertTrue(eq(m.transpose(), m._data.transpose()))
Example #12
Source File: gaussiancircuit.py From strawberryfields with Apache License 2.0 | 6 votes |
def qmat(self, modes=None): """ Construct the covariance matrix for the Q function""" if modes is None: modes = list(range(self.nlen)) rows = np.reshape(modes, [-1, 1]) cols = np.reshape(modes, [1, -1]) sigmaq = np.concatenate( ( np.concatenate( (self.nmat[rows, cols], np.conjugate(self.mmat[rows, cols])), axis=1 ), np.concatenate( (self.mmat[rows, cols], np.conjugate(self.nmat[rows, cols])), axis=1 ), ), axis=0, ) + np.identity(2 * len(modes)) return sigmaq
Example #13
Source File: test_core.py From lambda-packs with MIT License | 6 votes |
def test_generic_methods(self): # Tests some MaskedArray methods. a = array([1, 3, 2]) assert_equal(a.any(), a._data.any()) assert_equal(a.all(), a._data.all()) assert_equal(a.argmax(), a._data.argmax()) assert_equal(a.argmin(), a._data.argmin()) assert_equal(a.choose(0, 1, 2, 3, 4), a._data.choose(0, 1, 2, 3, 4)) assert_equal(a.compress([1, 0, 1]), a._data.compress([1, 0, 1])) assert_equal(a.conj(), a._data.conj()) assert_equal(a.conjugate(), a._data.conjugate()) m = array([[1, 2], [3, 4]]) assert_equal(m.diagonal(), m._data.diagonal()) assert_equal(a.sum(), a._data.sum()) assert_equal(a.take([1, 2]), a._data.take([1, 2])) assert_equal(m.transpose(), m._data.transpose())
Example #14
Source File: test_states_wigner.py From strawberryfields with Apache License 2.0 | 6 votes |
def test_squeezed_coherent(setup_backend, hbar, tol): """Test Wigner function for a squeezed coherent state matches the analytic result""" backend = setup_backend(1) backend.prepare_coherent_state(np.abs(A), np.angle(A), 0) backend.squeeze(R, PHI, 0) state = backend.state() W = state.wigner(0, XVEC, XVEC) rot = rotm(PHI / 2) # exact wigner function alpha = A * np.cosh(R) - np.conjugate(A) * np.exp(1j * PHI) * np.sinh(R) mu = np.array([alpha.real, alpha.imag]) * np.sqrt(2 * hbar) cov = np.diag([np.exp(-2 * R), np.exp(2 * R)]) cov = np.dot(rot, np.dot(cov, rot.T)) * hbar / 2.0 Wexact = wigner(GRID, mu, cov) assert np.allclose(W, Wexact, atol=0.01, rtol=0)
Example #15
Source File: whiten.py From dispel4py with Apache License 2.0 | 6 votes |
def spectralwhitening(stream): """ Apply spectral whitening to data. Data is divided by its smoothed (Default: None) amplitude spectrum. """ stream2 = copy.deepcopy(stream) for trace in arange(len(stream2)): data = stream2[trace].data n = len(data) nfft = nextpow2(n) spec = fft(data, nfft) spec_ampl = sqrt(abs(multiply(spec, conjugate(spec)))) spec /= spec_ampl # Do we need to do some smoothing here? ret = real(ifft(spec, nfft)[:n]) stream2[trace].data = ret return stream2
Example #16
Source File: whiten.py From dispel4py with Apache License 2.0 | 6 votes |
def spectralwhitening_smooth(stream, N): """ Apply spectral whitening to data. Data is divided by its smoothed (Default: None) amplitude spectrum. """ stream2 = copy.deepcopy(stream) for trace in arange(len(stream2)): data = stream2[trace].data n = len(data) nfft = nextpow2(n) spec = fft(data, nfft) spec_ampl = sqrt(abs(multiply(spec, conjugate(spec)))) spec_ampl = smooth(spec_ampl, N) spec /= spec_ampl # Do we need to do some smoothing here? ret = real(ifft(spec, nfft)[:n]) stream2[trace].data = ret return stream2
Example #17
Source File: reportableqty.py From pyGSTi with Apache License 2.0 | 6 votes |
def infidelity_diff(self, constant_value): """ Returns a ReportableQty that is the (element-wise in the vector case) difference between `constant_value` and this one given by: `1.0 - Re(conjugate(constant_value) * self )` """ # let diff(x) = 1.0 - Re(const.C * x) = 1.0 - (const.re * x.re + const.im * x.im) # so d(diff)/dx.re = -const.re, d(diff)/dx.im = -const.im # diff(x + dx) = diff(x) + d(diff)/dx * dx # diff(x + dx) - diff(x) = - (const.re * dx.re + const.im * dx.im) v = 1.0 - _np.real(_np.conjugate(constant_value) * self.value) if self.has_eb(): eb = abs(_np.real(constant_value) * _np.real(self.errbar) + _np.imag(constant_value) * _np.real(self.errbar)) return ReportableQty(v, eb, self.nonMarkovianEBs) else: return ReportableQty(v)
Example #18
Source File: test_polynomial.py From recruit with Apache License 2.0 | 6 votes |
def test_poly(self): assert_array_almost_equal(np.poly([3, -np.sqrt(2), np.sqrt(2)]), [1, -3, -2, 6]) # From matlab docs A = [[1, 2, 3], [4, 5, 6], [7, 8, 0]] assert_array_almost_equal(np.poly(A), [1, -6, -72, -27]) # Should produce real output for perfect conjugates assert_(np.isrealobj(np.poly([+1.082j, +2.613j, -2.613j, -1.082j]))) assert_(np.isrealobj(np.poly([0+1j, -0+-1j, 1+2j, 1-2j, 1.+3.5j, 1-3.5j]))) assert_(np.isrealobj(np.poly([1j, -1j, 1+2j, 1-2j, 1+3j, 1-3.j]))) assert_(np.isrealobj(np.poly([1j, -1j, 1+2j, 1-2j]))) assert_(np.isrealobj(np.poly([1j, -1j, 2j, -2j]))) assert_(np.isrealobj(np.poly([1j, -1j]))) assert_(np.isrealobj(np.poly([1, -1]))) assert_(np.iscomplexobj(np.poly([1j, -1.0000001j]))) np.random.seed(42) a = np.random.randn(100) + 1j*np.random.randn(100) assert_(np.isrealobj(np.poly(np.concatenate((a, np.conjugate(a))))))
Example #19
Source File: test_polynomial.py From lambda-packs with MIT License | 6 votes |
def test_poly(self): assert_array_almost_equal(np.poly([3, -np.sqrt(2), np.sqrt(2)]), [1, -3, -2, 6]) # From matlab docs A = [[1, 2, 3], [4, 5, 6], [7, 8, 0]] assert_array_almost_equal(np.poly(A), [1, -6, -72, -27]) # Should produce real output for perfect conjugates assert_(np.isrealobj(np.poly([+1.082j, +2.613j, -2.613j, -1.082j]))) assert_(np.isrealobj(np.poly([0+1j, -0+-1j, 1+2j, 1-2j, 1.+3.5j, 1-3.5j]))) assert_(np.isrealobj(np.poly([1j, -1j, 1+2j, 1-2j, 1+3j, 1-3.j]))) assert_(np.isrealobj(np.poly([1j, -1j, 1+2j, 1-2j]))) assert_(np.isrealobj(np.poly([1j, -1j, 2j, -2j]))) assert_(np.isrealobj(np.poly([1j, -1j]))) assert_(np.isrealobj(np.poly([1, -1]))) assert_(np.iscomplexobj(np.poly([1j, -1.0000001j]))) np.random.seed(42) a = np.random.randn(100) + 1j*np.random.randn(100) assert_(np.isrealobj(np.poly(np.concatenate((a, np.conjugate(a))))))
Example #20
Source File: m_c2r.py From pyscf with Apache License 2.0 | 6 votes |
def __init__(self, j): self._j = j self._c2r = np.zeros( (2*j+1, 2*j+1), dtype=np.complex128) self._c2r[j,j]=1.0 for m in range(1,j+1): self._c2r[m+j, m+j] = sgn[m] * np.sqrt(0.5) self._c2r[m+j,-m+j] = np.sqrt(0.5) self._c2r[-m+j,-m+j]= 1j*np.sqrt(0.5) self._c2r[-m+j, m+j]= -sgn[m] * 1j * np.sqrt(0.5) self._hc_c2r = np.conj(self._c2r).transpose() self._conj_c2r = np.conjugate(self._c2r) # what is the difference ? conj and conjugate self._tr_c2r = np.transpose(self._c2r) #print(abs(self._hc_c2r.conj().transpose()-self._c2r).sum()) # # #
Example #21
Source File: _testing_utils.py From OpenFermion with Apache License 2.0 | 5 votes |
def haar_random_vector(n, seed=None): """Generate an n dimensional Haar randomd vector.""" if seed is not None: numpy.random.seed(seed) vector = numpy.random.randn(n).astype(complex) vector += 1.j * numpy.random.randn(n).astype(complex) normalization = numpy.sqrt(vector.dot(numpy.conjugate(vector))) return vector / normalization
Example #22
Source File: gaussiancircuit.py From strawberryfields with Apache License 2.0 | 5 votes |
def Amat(self): """ Constructs the A matrix from Hamilton's paper""" ######### this needs to be conjugated sigmaq = np.concatenate( ( np.concatenate((np.transpose(self.nmat), self.mmat), axis=1), np.concatenate((np.transpose(np.conjugate(self.mmat)), self.nmat), axis=1), ), axis=0, ) + np.identity(2 * self.nlen) return np.dot(Xmat(self.nlen), np.identity(2 * self.nlen) - np.linalg.inv(sigmaq))
Example #23
Source File: test_core.py From lambda-packs with MIT License | 5 votes |
def test_oddfeatures_1(self): # Test of other odd features x = arange(20) x = x.reshape(4, 5) x.flat[5] = 12 assert_(x[1, 0] == 12) z = x + 10j * x assert_equal(z.real, x) assert_equal(z.imag, 10 * x) assert_equal((z * conjugate(z)).real, 101 * x * x) z.imag[...] = 0.0 x = arange(10) x[3] = masked assert_(str(x[3]) == str(masked)) c = x >= 8 assert_(count(where(c, masked, masked)) == 0) assert_(shape(where(c, masked, masked)) == c.shape) z = masked_where(c, x) assert_(z.dtype is x.dtype) assert_(z[3] is masked) assert_(z[4] is not masked) assert_(z[7] is not masked) assert_(z[8] is masked) assert_(z[9] is masked) assert_equal(x, z)
Example #24
Source File: test_core.py From auto-alt-text-lambda-api with MIT License | 5 votes |
def test_basic_ufuncs(self): # Test various functions such as sin, cos. (x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d assert_equal(np.cos(x), cos(xm)) assert_equal(np.cosh(x), cosh(xm)) assert_equal(np.sin(x), sin(xm)) assert_equal(np.sinh(x), sinh(xm)) assert_equal(np.tan(x), tan(xm)) assert_equal(np.tanh(x), tanh(xm)) assert_equal(np.sqrt(abs(x)), sqrt(xm)) assert_equal(np.log(abs(x)), log(xm)) assert_equal(np.log10(abs(x)), log10(xm)) assert_equal(np.exp(x), exp(xm)) assert_equal(np.arcsin(z), arcsin(zm)) assert_equal(np.arccos(z), arccos(zm)) assert_equal(np.arctan(z), arctan(zm)) assert_equal(np.arctan2(x, y), arctan2(xm, ym)) assert_equal(np.absolute(x), absolute(xm)) assert_equal(np.angle(x + 1j*y), angle(xm + 1j*ym)) assert_equal(np.angle(x + 1j*y, deg=True), angle(xm + 1j*ym, deg=True)) assert_equal(np.equal(x, y), equal(xm, ym)) assert_equal(np.not_equal(x, y), not_equal(xm, ym)) assert_equal(np.less(x, y), less(xm, ym)) assert_equal(np.greater(x, y), greater(xm, ym)) assert_equal(np.less_equal(x, y), less_equal(xm, ym)) assert_equal(np.greater_equal(x, y), greater_equal(xm, ym)) assert_equal(np.conjugate(x), conjugate(xm))
Example #25
Source File: test_core.py From auto-alt-text-lambda-api with MIT License | 5 votes |
def test_oddfeatures_1(self): # Test of other odd features x = arange(20) x = x.reshape(4, 5) x.flat[5] = 12 assert_(x[1, 0] == 12) z = x + 10j * x assert_equal(z.real, x) assert_equal(z.imag, 10 * x) assert_equal((z * conjugate(z)).real, 101 * x * x) z.imag[...] = 0.0 x = arange(10) x[3] = masked assert_(str(x[3]) == str(masked)) c = x >= 8 assert_(count(where(c, masked, masked)) == 0) assert_(shape(where(c, masked, masked)) == c.shape) z = masked_where(c, x) assert_(z.dtype is x.dtype) assert_(z[3] is masked) assert_(z[4] is not masked) assert_(z[7] is not masked) assert_(z[8] is masked) assert_(z[9] is masked) assert_equal(x, z)
Example #26
Source File: test_old_ma.py From auto-alt-text-lambda-api with MIT License | 5 votes |
def test_testUfuncRegression(self): f_invalid_ignore = [ 'sqrt', 'arctanh', 'arcsin', 'arccos', 'arccosh', 'arctanh', 'log', 'log10', 'divide', 'true_divide', 'floor_divide', 'remainder', 'fmod'] for f in ['sqrt', 'log', 'log10', 'exp', 'conjugate', 'sin', 'cos', 'tan', 'arcsin', 'arccos', 'arctan', 'sinh', 'cosh', 'tanh', 'arcsinh', 'arccosh', 'arctanh', 'absolute', 'fabs', 'negative', 'floor', 'ceil', 'logical_not', 'add', 'subtract', 'multiply', 'divide', 'true_divide', 'floor_divide', 'remainder', 'fmod', 'hypot', 'arctan2', 'equal', 'not_equal', 'less_equal', 'greater_equal', 'less', 'greater', 'logical_and', 'logical_or', 'logical_xor']: try: uf = getattr(umath, f) except AttributeError: uf = getattr(fromnumeric, f) mf = getattr(np.ma, f) args = self.d[:uf.nin] with np.errstate(): if f in f_invalid_ignore: np.seterr(invalid='ignore') if f in ['arctanh', 'log', 'log10']: np.seterr(divide='ignore') ur = uf(*args) mr = mf(*args) self.assertTrue(eq(ur.filled(0), mr.filled(0), f)) self.assertTrue(eqmask(ur.mask, mr.mask))
Example #27
Source File: test_old_ma.py From auto-alt-text-lambda-api with MIT License | 5 votes |
def test_testUfuncs1(self): # Test various functions such as sin, cos. (x, y, a10, m1, m2, xm, ym, z, zm, xf, s) = self.d self.assertTrue(eq(np.cos(x), cos(xm))) self.assertTrue(eq(np.cosh(x), cosh(xm))) self.assertTrue(eq(np.sin(x), sin(xm))) self.assertTrue(eq(np.sinh(x), sinh(xm))) self.assertTrue(eq(np.tan(x), tan(xm))) self.assertTrue(eq(np.tanh(x), tanh(xm))) with np.errstate(divide='ignore', invalid='ignore'): self.assertTrue(eq(np.sqrt(abs(x)), sqrt(xm))) self.assertTrue(eq(np.log(abs(x)), log(xm))) self.assertTrue(eq(np.log10(abs(x)), log10(xm))) self.assertTrue(eq(np.exp(x), exp(xm))) self.assertTrue(eq(np.arcsin(z), arcsin(zm))) self.assertTrue(eq(np.arccos(z), arccos(zm))) self.assertTrue(eq(np.arctan(z), arctan(zm))) self.assertTrue(eq(np.arctan2(x, y), arctan2(xm, ym))) self.assertTrue(eq(np.absolute(x), absolute(xm))) self.assertTrue(eq(np.equal(x, y), equal(xm, ym))) self.assertTrue(eq(np.not_equal(x, y), not_equal(xm, ym))) self.assertTrue(eq(np.less(x, y), less(xm, ym))) self.assertTrue(eq(np.greater(x, y), greater(xm, ym))) self.assertTrue(eq(np.less_equal(x, y), less_equal(xm, ym))) self.assertTrue(eq(np.greater_equal(x, y), greater_equal(xm, ym))) self.assertTrue(eq(np.conjugate(x), conjugate(xm))) self.assertTrue(eq(np.concatenate((x, y)), concatenate((xm, ym)))) self.assertTrue(eq(np.concatenate((x, y)), concatenate((x, y)))) self.assertTrue(eq(np.concatenate((x, y)), concatenate((xm, y)))) self.assertTrue(eq(np.concatenate((x, y, x)), concatenate((x, ym, x))))
Example #28
Source File: test_core.py From lambda-packs with MIT License | 5 votes |
def test_testUfuncRegression(self): # Tests new ufuncs on MaskedArrays. for f in ['sqrt', 'log', 'log10', 'exp', 'conjugate', 'sin', 'cos', 'tan', 'arcsin', 'arccos', 'arctan', 'sinh', 'cosh', 'tanh', 'arcsinh', 'arccosh', 'arctanh', 'absolute', 'fabs', 'negative', 'floor', 'ceil', 'logical_not', 'add', 'subtract', 'multiply', 'divide', 'true_divide', 'floor_divide', 'remainder', 'fmod', 'hypot', 'arctan2', 'equal', 'not_equal', 'less_equal', 'greater_equal', 'less', 'greater', 'logical_and', 'logical_or', 'logical_xor', ]: try: uf = getattr(umath, f) except AttributeError: uf = getattr(fromnumeric, f) mf = getattr(numpy.ma.core, f) args = self.d[:uf.nin] ur = uf(*args) mr = mf(*args) assert_equal(ur.filled(0), mr.filled(0), f) assert_mask_equal(ur.mask, mr.mask, err_msg=f)
Example #29
Source File: test_core.py From lambda-packs with MIT License | 5 votes |
def test_basic_ufuncs(self): # Test various functions such as sin, cos. (x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d assert_equal(np.cos(x), cos(xm)) assert_equal(np.cosh(x), cosh(xm)) assert_equal(np.sin(x), sin(xm)) assert_equal(np.sinh(x), sinh(xm)) assert_equal(np.tan(x), tan(xm)) assert_equal(np.tanh(x), tanh(xm)) assert_equal(np.sqrt(abs(x)), sqrt(xm)) assert_equal(np.log(abs(x)), log(xm)) assert_equal(np.log10(abs(x)), log10(xm)) assert_equal(np.exp(x), exp(xm)) assert_equal(np.arcsin(z), arcsin(zm)) assert_equal(np.arccos(z), arccos(zm)) assert_equal(np.arctan(z), arctan(zm)) assert_equal(np.arctan2(x, y), arctan2(xm, ym)) assert_equal(np.absolute(x), absolute(xm)) assert_equal(np.angle(x + 1j*y), angle(xm + 1j*ym)) assert_equal(np.angle(x + 1j*y, deg=True), angle(xm + 1j*ym, deg=True)) assert_equal(np.equal(x, y), equal(xm, ym)) assert_equal(np.not_equal(x, y), not_equal(xm, ym)) assert_equal(np.less(x, y), less(xm, ym)) assert_equal(np.greater(x, y), greater(xm, ym)) assert_equal(np.less_equal(x, y), less_equal(xm, ym)) assert_equal(np.greater_equal(x, y), greater_equal(xm, ym)) assert_equal(np.conjugate(x), conjugate(xm))
Example #30
Source File: test_old_ma.py From lambda-packs with MIT License | 5 votes |
def test_testUfuncs1(self): # Test various functions such as sin, cos. (x, y, a10, m1, m2, xm, ym, z, zm, xf, s) = self.d self.assertTrue(eq(np.cos(x), cos(xm))) self.assertTrue(eq(np.cosh(x), cosh(xm))) self.assertTrue(eq(np.sin(x), sin(xm))) self.assertTrue(eq(np.sinh(x), sinh(xm))) self.assertTrue(eq(np.tan(x), tan(xm))) self.assertTrue(eq(np.tanh(x), tanh(xm))) with np.errstate(divide='ignore', invalid='ignore'): self.assertTrue(eq(np.sqrt(abs(x)), sqrt(xm))) self.assertTrue(eq(np.log(abs(x)), log(xm))) self.assertTrue(eq(np.log10(abs(x)), log10(xm))) self.assertTrue(eq(np.exp(x), exp(xm))) self.assertTrue(eq(np.arcsin(z), arcsin(zm))) self.assertTrue(eq(np.arccos(z), arccos(zm))) self.assertTrue(eq(np.arctan(z), arctan(zm))) self.assertTrue(eq(np.arctan2(x, y), arctan2(xm, ym))) self.assertTrue(eq(np.absolute(x), absolute(xm))) self.assertTrue(eq(np.equal(x, y), equal(xm, ym))) self.assertTrue(eq(np.not_equal(x, y), not_equal(xm, ym))) self.assertTrue(eq(np.less(x, y), less(xm, ym))) self.assertTrue(eq(np.greater(x, y), greater(xm, ym))) self.assertTrue(eq(np.less_equal(x, y), less_equal(xm, ym))) self.assertTrue(eq(np.greater_equal(x, y), greater_equal(xm, ym))) self.assertTrue(eq(np.conjugate(x), conjugate(xm))) self.assertTrue(eq(np.concatenate((x, y)), concatenate((xm, ym)))) self.assertTrue(eq(np.concatenate((x, y)), concatenate((x, y)))) self.assertTrue(eq(np.concatenate((x, y)), concatenate((xm, y)))) self.assertTrue(eq(np.concatenate((x, y, x)), concatenate((x, ym, x))))