Python numpy.bool_() Examples
The following are 30
code examples of numpy.bool_().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example #1
Source File: test_panel.py From recruit with Apache License 2.0 | 6 votes |
def test_to_frame_mixed(self): panel = self.panel.fillna(0) panel['str'] = 'foo' panel['bool'] = panel['ItemA'] > 0 lp = panel.to_frame() wp = lp.to_panel() assert wp['bool'].values.dtype == np.bool_ # Previously, this was mutating the underlying # index and changing its name assert_frame_equal(wp['bool'], panel['bool'], check_names=False) # GH 8704 # with categorical df = panel.to_frame() df['category'] = df['str'].astype('category') # to_panel # TODO: this converts back to object p = df.to_panel() expected = panel.copy() expected['category'] = 'foo' assert_panel_equal(p, expected)
Example #2
Source File: test_inference.py From recruit with Apache License 2.0 | 6 votes |
def test_is_number(self): assert is_number(True) assert is_number(1) assert is_number(1.1) assert is_number(1 + 3j) assert is_number(np.bool(False)) assert is_number(np.int64(1)) assert is_number(np.float64(1.1)) assert is_number(np.complex128(1 + 3j)) assert is_number(np.nan) assert not is_number(None) assert not is_number('x') assert not is_number(datetime(2011, 1, 1)) assert not is_number(np.datetime64('2011-01-01')) assert not is_number(Timestamp('2011-01-01')) assert not is_number(Timestamp('2011-01-01', tz='US/Eastern')) assert not is_number(timedelta(1000)) assert not is_number(Timedelta('1 days')) # questionable assert not is_number(np.bool_(False)) assert is_number(np.timedelta64(1, 'D'))
Example #3
Source File: test_inference.py From recruit with Apache License 2.0 | 6 votes |
def test_bools(self): arr = np.array([True, False, True, True, True], dtype='O') result = lib.infer_dtype(arr, skipna=True) assert result == 'boolean' arr = np.array([np.bool_(True), np.bool_(False)], dtype='O') result = lib.infer_dtype(arr, skipna=True) assert result == 'boolean' arr = np.array([True, False, True, 'foo'], dtype='O') result = lib.infer_dtype(arr, skipna=True) assert result == 'mixed' arr = np.array([True, False, True], dtype=bool) result = lib.infer_dtype(arr, skipna=True) assert result == 'boolean' arr = np.array([True, np.nan, False], dtype='O') result = lib.infer_dtype(arr, skipna=True) assert result == 'boolean' result = lib.infer_dtype(arr, skipna=False) assert result == 'mixed'
Example #4
Source File: test_arithmetic.py From recruit with Apache License 2.0 | 6 votes |
def test_flex_comparison_nat(self): # GH 15697, GH 22163 df.eq(pd.NaT) should behave like df == pd.NaT, # and _definitely_ not be NaN df = pd.DataFrame([pd.NaT]) result = df == pd.NaT # result.iloc[0, 0] is a np.bool_ object assert result.iloc[0, 0].item() is False result = df.eq(pd.NaT) assert result.iloc[0, 0].item() is False result = df != pd.NaT assert result.iloc[0, 0].item() is True result = df.ne(pd.NaT) assert result.iloc[0, 0].item() is True
Example #5
Source File: _dtype.py From recruit with Apache License 2.0 | 6 votes |
def _name_get(dtype): # provides dtype.name.__get__ if dtype.isbuiltin == 2: # user dtypes don't promise to do anything special return dtype.type.__name__ # Builtin classes are documented as returning a "bit name" name = dtype.type.__name__ # handle bool_, str_, etc if name[-1] == '_': name = name[:-1] # append bit counts to str, unicode, and void if np.issubdtype(dtype, np.flexible) and not _isunsized(dtype): name += "{}".format(dtype.itemsize * 8) # append metadata to datetimes elif dtype.type in (np.datetime64, np.timedelta64): name += _datetime_metadata_str(dtype) return name
Example #6
Source File: test_inference.py From recruit with Apache License 2.0 | 6 votes |
def test_is_bool(self): assert is_bool(True) assert is_bool(np.bool(False)) assert is_bool(np.bool_(False)) assert not is_bool(1) assert not is_bool(1.1) assert not is_bool(1 + 3j) assert not is_bool(np.int64(1)) assert not is_bool(np.float64(1.1)) assert not is_bool(np.complex128(1 + 3j)) assert not is_bool(np.nan) assert not is_bool(None) assert not is_bool('x') assert not is_bool(datetime(2011, 1, 1)) assert not is_bool(np.datetime64('2011-01-01')) assert not is_bool(Timestamp('2011-01-01')) assert not is_bool(Timestamp('2011-01-01', tz='US/Eastern')) assert not is_bool(timedelta(1000)) assert not is_bool(np.timedelta64(1, 'D')) assert not is_bool(Timedelta('1 days'))
Example #7
Source File: test_random.py From recruit with Apache License 2.0 | 6 votes |
def test_respect_dtype_singleton(self): # See gh-7203 for dt in self.itype: lbnd = 0 if dt is np.bool_ else np.iinfo(dt).min ubnd = 2 if dt is np.bool_ else np.iinfo(dt).max + 1 sample = self.rfunc(lbnd, ubnd, dtype=dt) assert_equal(sample.dtype, np.dtype(dt)) for dt in (bool, int, np.long): lbnd = 0 if dt is bool else np.iinfo(dt).min ubnd = 2 if dt is bool else np.iinfo(dt).max + 1 # gh-7284: Ensure that we get Python data types sample = self.rfunc(lbnd, ubnd, dtype=dt) assert_(not hasattr(sample, 'dtype')) assert_equal(type(sample), dt)
Example #8
Source File: test_inference.py From recruit with Apache License 2.0 | 6 votes |
def test_is_integer(self): assert is_integer(1) assert is_integer(np.int64(1)) assert not is_integer(True) assert not is_integer(1.1) assert not is_integer(1 + 3j) assert not is_integer(np.bool(False)) assert not is_integer(np.bool_(False)) assert not is_integer(np.float64(1.1)) assert not is_integer(np.complex128(1 + 3j)) assert not is_integer(np.nan) assert not is_integer(None) assert not is_integer('x') assert not is_integer(datetime(2011, 1, 1)) assert not is_integer(np.datetime64('2011-01-01')) assert not is_integer(Timestamp('2011-01-01')) assert not is_integer(Timestamp('2011-01-01', tz='US/Eastern')) assert not is_integer(timedelta(1000)) assert not is_integer(Timedelta('1 days')) # questionable assert is_integer(np.timedelta64(1, 'D'))
Example #9
Source File: test_inference.py From recruit with Apache License 2.0 | 6 votes |
def test_is_float(self): assert is_float(1.1) assert is_float(np.float64(1.1)) assert is_float(np.nan) assert not is_float(True) assert not is_float(1) assert not is_float(1 + 3j) assert not is_float(np.bool(False)) assert not is_float(np.bool_(False)) assert not is_float(np.int64(1)) assert not is_float(np.complex128(1 + 3j)) assert not is_float(None) assert not is_float('x') assert not is_float(datetime(2011, 1, 1)) assert not is_float(np.datetime64('2011-01-01')) assert not is_float(Timestamp('2011-01-01')) assert not is_float(Timestamp('2011-01-01', tz='US/Eastern')) assert not is_float(timedelta(1000)) assert not is_float(np.timedelta64(1, 'D')) assert not is_float(Timedelta('1 days'))
Example #10
Source File: test_dtypes.py From recruit with Apache License 2.0 | 6 votes |
def test_select_dtypes_exclude_include_using_list_like(self): df = DataFrame({'a': list('abc'), 'b': list(range(1, 4)), 'c': np.arange(3, 6).astype('u1'), 'd': np.arange(4.0, 7.0, dtype='float64'), 'e': [True, False, True], 'f': pd.date_range('now', periods=3).values}) exclude = np.datetime64, include = np.bool_, 'integer' r = df.select_dtypes(include=include, exclude=exclude) e = df[['b', 'c', 'e']] assert_frame_equal(r, e) exclude = 'datetime', include = 'bool', 'int64', 'int32' r = df.select_dtypes(include=include, exclude=exclude) e = df[['b', 'e']] assert_frame_equal(r, e)
Example #11
Source File: test_core.py From recruit with Apache License 2.0 | 6 votes |
def test_allany(self): # Checks the any/all methods/functions. x = np.array([[0.13, 0.26, 0.90], [0.28, 0.33, 0.63], [0.31, 0.87, 0.70]]) m = np.array([[True, False, False], [False, False, False], [True, True, False]], dtype=np.bool_) mx = masked_array(x, mask=m) mxbig = (mx > 0.5) mxsmall = (mx < 0.5) assert_(not mxbig.all()) assert_(mxbig.any()) assert_equal(mxbig.all(0), [False, False, True]) assert_equal(mxbig.all(1), [False, False, True]) assert_equal(mxbig.any(0), [False, False, True]) assert_equal(mxbig.any(1), [True, True, True]) assert_(not mxsmall.all()) assert_(mxsmall.any()) assert_equal(mxsmall.all(0), [True, True, False]) assert_equal(mxsmall.all(1), [False, False, False]) assert_equal(mxsmall.any(0), [True, True, False]) assert_equal(mxsmall.any(1), [True, True, False])
Example #12
Source File: sparse.py From recruit with Apache License 2.0 | 6 votes |
def _wrap_result(name, data, sparse_index, fill_value, dtype=None): """ wrap op result to have correct dtype """ if name.startswith('__'): # e.g. __eq__ --> eq name = name[2:-2] if name in ('eq', 'ne', 'lt', 'gt', 'le', 'ge'): dtype = np.bool fill_value = lib.item_from_zerodim(fill_value) if is_bool_dtype(dtype): # fill_value may be np.bool_ fill_value = bool(fill_value) return SparseArray(data, sparse_index=sparse_index, fill_value=fill_value, dtype=dtype)
Example #13
Source File: test_strings.py From recruit with Apache License 2.0 | 6 votes |
def test_contains_nan(self): # PR #14171 s = Series([np.nan, np.nan, np.nan], dtype=np.object_) result = s.str.contains('foo', na=False) expected = Series([False, False, False], dtype=np.bool_) assert_series_equal(result, expected) result = s.str.contains('foo', na=True) expected = Series([True, True, True], dtype=np.bool_) assert_series_equal(result, expected) result = s.str.contains('foo', na="foo") expected = Series(["foo", "foo", "foo"], dtype=np.object_) assert_series_equal(result, expected) result = s.str.contains('foo') expected = Series([np.nan, np.nan, np.nan], dtype=np.object_) assert_series_equal(result, expected)
Example #14
Source File: histograms.py From recruit with Apache License 2.0 | 6 votes |
def _ravel_and_check_weights(a, weights): """ Check a and weights have matching shapes, and ravel both """ a = np.asarray(a) # Ensure that the array is a "subtractable" dtype if a.dtype == np.bool_: warnings.warn("Converting input from {} to {} for compatibility." .format(a.dtype, np.uint8), RuntimeWarning, stacklevel=2) a = a.astype(np.uint8) if weights is not None: weights = np.asarray(weights) if weights.shape != a.shape: raise ValueError( 'weights should have the same shape as a.') weights = weights.ravel() a = a.ravel() return a, weights
Example #15
Source File: test_masked_matrix.py From recruit with Apache License 2.0 | 6 votes |
def test_allany_onmatrices(self): x = np.array([[0.13, 0.26, 0.90], [0.28, 0.33, 0.63], [0.31, 0.87, 0.70]]) X = np.matrix(x) m = np.array([[True, False, False], [False, False, False], [True, True, False]], dtype=np.bool_) mX = masked_array(X, mask=m) mXbig = (mX > 0.5) mXsmall = (mX < 0.5) assert_(not mXbig.all()) assert_(mXbig.any()) assert_equal(mXbig.all(0), np.matrix([False, False, True])) assert_equal(mXbig.all(1), np.matrix([False, False, True]).T) assert_equal(mXbig.any(0), np.matrix([False, False, True])) assert_equal(mXbig.any(1), np.matrix([True, True, True]).T) assert_(not mXsmall.all()) assert_(mXsmall.any()) assert_equal(mXsmall.all(0), np.matrix([True, True, False])) assert_equal(mXsmall.all(1), np.matrix([False, False, False]).T) assert_equal(mXsmall.any(0), np.matrix([True, True, False])) assert_equal(mXsmall.any(1), np.matrix([True, True, False]).T)
Example #16
Source File: duplicate.py From pymoo with Apache License 2.0 | 6 votes |
def _do(self, pop, other, is_duplicate): def to_float(val): if isinstance(val, bool) or isinstance(val, np.bool_): return 0.0 if val else 1.0 else: return val if other is None: for i in range(len(pop)): for j in range(i + 1, len(pop)): val = to_float(self.cmp(pop[i], pop[j])) if val < self.epsilon: is_duplicate[i] = True break else: for i in range(len(pop)): for j in range(len(other)): val = to_float(self.cmp(pop[i], other[j])) if val < self.epsilon: is_duplicate[i] = True break return is_duplicate
Example #17
Source File: test_regression.py From recruit with Apache License 2.0 | 6 votes |
def test_ticket_1539(self): dtypes = [x for x in np.typeDict.values() if (issubclass(x, np.number) and not issubclass(x, np.timedelta64))] a = np.array([], np.bool_) # not x[0] because it is unordered failures = [] for x in dtypes: b = a.astype(x) for y in dtypes: c = a.astype(y) try: np.dot(b, c) except TypeError: failures.append((x, y)) if failures: raise AssertionError("Failures: %r" % failures)
Example #18
Source File: TargetList.py From EXOSIMS with BSD 3-Clause "New" or "Revised" License | 6 votes |
def nan_filter(self): """Populates Target List and filters out values which are nan """ # filter out nan values in numerical attributes for att in self.catalog_atts: if ('close' in att) or ('bright' in att): continue if getattr(self, att).shape[0] == 0: pass elif (type(getattr(self, att)[0]) == str) or (type(getattr(self, att)[0]) == bytes): # FIXME: intent here unclear: # note float('nan') is an IEEE NaN, getattr(.) is a str, and != on NaNs is special i = np.where(getattr(self, att) != float('nan'))[0] self.revise_lists(i) # exclude non-numerical types elif type(getattr(self, att)[0]) not in (np.unicode_, np.string_, np.bool_, bytes): if att == 'coords': i1 = np.where(~np.isnan(self.coords.ra.to('deg').value))[0] i2 = np.where(~np.isnan(self.coords.dec.to('deg').value))[0] i = np.intersect1d(i1,i2) else: i = np.where(~np.isnan(getattr(self, att)))[0] self.revise_lists(i)
Example #19
Source File: sparse.py From recruit with Apache License 2.0 | 5 votes |
def _create_comparison_method(cls, op): def cmp_method(self, other): op_name = op.__name__ if op_name in {'and_', 'or_'}: op_name = op_name[:-1] if isinstance(other, (ABCSeries, ABCIndexClass)): # Rely on pandas to unbox and dispatch to us. return NotImplemented if not is_scalar(other) and not isinstance(other, type(self)): # convert list-like to ndarray other = np.asarray(other) if isinstance(other, np.ndarray): # TODO: make this more flexible than just ndarray... if len(self) != len(other): raise AssertionError("length mismatch: {self} vs. {other}" .format(self=len(self), other=len(other))) other = SparseArray(other, fill_value=self.fill_value) if isinstance(other, SparseArray): return _sparse_array_op(self, other, op, op_name) else: with np.errstate(all='ignore'): fill_value = op(self.fill_value, other) result = op(self.sp_values, other) return type(self)(result, sparse_index=self.sp_index, fill_value=fill_value, dtype=np.bool_) name = '__{name}__'.format(name=op.__name__) return compat.set_function_name(cmp_method, name, cls)
Example #20
Source File: blocks.py From recruit with Apache License 2.0 | 5 votes |
def should_store(self, value): return not (issubclass(value.dtype.type, (np.integer, np.floating, np.complexfloating, np.datetime64, np.bool_)) or # TODO(ExtensionArray): remove is_extension_type # when all extension arrays have been ported. is_extension_type(value) or is_extension_array_dtype(value))
Example #21
Source File: base.py From recruit with Apache License 2.0 | 5 votes |
def _isnan(self): """ Return if each value is NaN. """ if self._can_hold_na: return isna(self) else: # shouldn't reach to this condition by checking hasnans beforehand values = np.empty(len(self), dtype=np.bool_) values.fill(False) return values
Example #22
Source File: test_packers.py From recruit with Apache License 2.0 | 5 votes |
def test_list_mixed(self): x = [1.0, np.float32(3.5), np.complex128(4.25), u('foo'), np.bool_(1)] x_rec = self.encode_decode(x) # current msgpack cannot distinguish list/tuple tm.assert_almost_equal(tuple(x), x_rec) x_rec = self.encode_decode(tuple(x)) tm.assert_almost_equal(tuple(x), x_rec)
Example #23
Source File: blocks.py From recruit with Apache License 2.0 | 5 votes |
def _can_hold_element(self, element): tipo = maybe_infer_dtype_type(element) if tipo is not None: return issubclass(tipo.type, np.bool_) return isinstance(element, (bool, np.bool_))
Example #24
Source File: test_constructors.py From recruit with Apache License 2.0 | 5 votes |
def test_constructor_scalar_inference(self): data = {'int': 1, 'bool': True, 'float': 3., 'complex': 4j, 'object': 'foo'} df = DataFrame(data, index=np.arange(10)) assert df['int'].dtype == np.int64 assert df['bool'].dtype == np.bool_ assert df['float'].dtype == np.float64 assert df['complex'].dtype == np.complex128 assert df['object'].dtype == np.object_
Example #25
Source File: test_analytics.py From recruit with Apache License 2.0 | 5 votes |
def test_any_all_np_func(self, func, data, expected): # GH 19976 data = DataFrame(data) result = func(data) assert isinstance(result, np.bool_) assert result.item() is expected # method version result = getattr(DataFrame(data), func.__name__)(axis=None) assert isinstance(result, np.bool_) assert result.item() is expected
Example #26
Source File: test_operators.py From recruit with Apache License 2.0 | 5 votes |
def test_logical_operators(self): def _check_bin_op(op): result = op(df1, df2) expected = DataFrame(op(df1.values, df2.values), index=df1.index, columns=df1.columns) assert result.values.dtype == np.bool_ assert_frame_equal(result, expected) def _check_unary_op(op): result = op(df1) expected = DataFrame(op(df1.values), index=df1.index, columns=df1.columns) assert result.values.dtype == np.bool_ assert_frame_equal(result, expected) df1 = {'a': {'a': True, 'b': False, 'c': False, 'd': True, 'e': True}, 'b': {'a': False, 'b': True, 'c': False, 'd': False, 'e': False}, 'c': {'a': False, 'b': False, 'c': True, 'd': False, 'e': False}, 'd': {'a': True, 'b': False, 'c': False, 'd': True, 'e': True}, 'e': {'a': True, 'b': False, 'c': False, 'd': True, 'e': True}} df2 = {'a': {'a': True, 'b': False, 'c': True, 'd': False, 'e': False}, 'b': {'a': False, 'b': True, 'c': False, 'd': False, 'e': False}, 'c': {'a': True, 'b': False, 'c': True, 'd': False, 'e': False}, 'd': {'a': False, 'b': False, 'c': False, 'd': True, 'e': False}, 'e': {'a': False, 'b': False, 'c': False, 'd': False, 'e': True}} df1 = DataFrame(df1) df2 = DataFrame(df2) _check_bin_op(operator.and_) _check_bin_op(operator.or_) _check_bin_op(operator.xor) _check_unary_op(operator.inv) # TODO: belongs elsewhere
Example #27
Source File: test_indexing.py From recruit with Apache License 2.0 | 5 votes |
def test_lookup(self): def alt(df, rows, cols, dtype): with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): result = [df.get_value(r, c) for r, c in zip(rows, cols)] return np.array(result, dtype=dtype) def testit(df): rows = list(df.index) * len(df.columns) cols = list(df.columns) * len(df.index) result = df.lookup(rows, cols) expected = alt(df, rows, cols, dtype=np.object_) tm.assert_almost_equal(result, expected, check_dtype=False) testit(self.mixed_frame) testit(self.frame) df = DataFrame({'label': ['a', 'b', 'a', 'c'], 'mask_a': [True, True, False, True], 'mask_b': [True, False, False, False], 'mask_c': [False, True, False, True]}) df['mask'] = df.lookup(df.index, 'mask_' + df['label']) exp_mask = alt(df, df.index, 'mask_' + df['label'], dtype=np.bool_) tm.assert_series_equal(df['mask'], pd.Series(exp_mask, name='mask')) assert df['mask'].dtype == np.bool_ with pytest.raises(KeyError): self.frame.lookup(['xyz'], ['A']) with pytest.raises(KeyError): self.frame.lookup([self.frame.index[0]], ['xyz']) with pytest.raises(ValueError, match='same size'): self.frame.lookup(['a', 'b', 'c'], ['a'])
Example #28
Source File: test_algos.py From recruit with Apache License 2.0 | 5 votes |
def test_arrmap(): values = np.array(['foo', 'foo', 'bar', 'bar', 'baz', 'qux'], dtype='O') result = libalgos.arrmap_object(values, lambda x: x in ['foo', 'bar']) assert (result.dtype == np.bool_)
Example #29
Source File: test_internals.py From recruit with Apache License 2.0 | 5 votes |
def test_as_array_int_bool(self): mgr = create_mgr('a: bool-1; b: bool-2') assert mgr.as_array().dtype == np.bool_ mgr = create_mgr('a: i8-1; b: i8-2; c: i4; d: i2; e: u1') assert mgr.as_array().dtype == np.int64 mgr = create_mgr('c: i4; d: i2; e: u1') assert mgr.as_array().dtype == np.int32
Example #30
Source File: test_panel.py From recruit with Apache License 2.0 | 5 votes |
def test_panel_np_all(): wp = Panel({"A": DataFrame({'b': [1, 2]})}) result = np.all(wp) assert result == np.bool_(True)