Python scipy.ones() Examples
The following are 17
code examples of scipy.ones().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
scipy
, or try the search function
.
Example #1
Source File: test_mldata.py From twitter-stock-recommendation with MIT License | 6 votes |
def test_download(): """Test that fetch_mldata is able to download and cache a data set.""" _urlopen_ref = datasets.mldata.urlopen datasets.mldata.urlopen = mock_mldata_urlopen({ 'mock': { 'label': sp.ones((150,)), 'data': sp.ones((150, 4)), }, }) try: mock = fetch_mldata('mock', data_home=tmpdir) for n in ["COL_NAMES", "DESCR", "target", "data"]: assert_in(n, mock) assert_equal(mock.target.shape, (150,)) assert_equal(mock.data.shape, (150, 4)) assert_raises(datasets.mldata.HTTPError, fetch_mldata, 'not_existing_name') finally: datasets.mldata.urlopen = _urlopen_ref
Example #2
Source File: test_mldata.py From Mastering-Elasticsearch-7.0 with MIT License | 6 votes |
def test_download(tmpdata): """Test that fetch_mldata is able to download and cache a data set.""" _urlopen_ref = datasets.mldata.urlopen datasets.mldata.urlopen = mock_mldata_urlopen({ 'mock': { 'label': sp.ones((150,)), 'data': sp.ones((150, 4)), }, }) try: mock = assert_warns(DeprecationWarning, fetch_mldata, 'mock', data_home=tmpdata) for n in ["COL_NAMES", "DESCR", "target", "data"]: assert_in(n, mock) assert_equal(mock.target.shape, (150,)) assert_equal(mock.data.shape, (150, 4)) assert_raises(datasets.mldata.HTTPError, assert_warns, DeprecationWarning, fetch_mldata, 'not_existing_name') finally: datasets.mldata.urlopen = _urlopen_ref
Example #3
Source File: MR.py From mr_saliency with GNU General Public License v2.0 | 6 votes |
def __MR_boundary_indictor(self,labels): s = sp.amax(labels)+1 up_indictor = (sp.ones((s,1))).astype(float) right_indictor = (sp.ones((s,1))).astype(float) low_indictor = (sp.ones((s,1))).astype(float) left_indictor = (sp.ones((s,1))).astype(float) upper_ids = sp.unique(labels[0,:]).astype(int) right_ids = sp.unique(labels[:,labels.shape[1]-1]).astype(int) low_ids = sp.unique(labels[labels.shape[0]-1,:]).astype(int) left_ids = sp.unique(labels[:,0]).astype(int) up_indictor[upper_ids] = 0.0 right_indictor[right_ids] = 0.0 low_indictor[low_ids] = 0.0 left_indictor[left_ids] = 0.0 return up_indictor,right_indictor,low_indictor,left_indictor
Example #4
Source File: instrument_model.py From isofit with Apache License 2.0 | 6 votes |
def _flat_field(X, uniformity_thresh): """.""" Xhoriz = _low_frequency_horiz(X, sigma=4.0) Xhorizp = _low_frequency_horiz(X, sigma=3.0) nl, nb, nc = X.shape FF = s.zeros((nb, nc)) use_ff = s.ones((X.shape[0], X.shape[2])) > 0 for b in range(nb): xsub = Xhoriz[:, b, :] xsubp = Xhorizp[:, b, :] mu = xsub.mean(axis=0) dists = abs(xsub - mu) distsp = abs(xsubp - mu) thresh = _percentile(dists.flatten(), 90.0) uthresh = dists * uniformity_thresh #use = s.logical_and(dists<thresh, abs(dists-distsp) < uthresh) use = dists < thresh FF[b, :] = ((xsub*use).sum(axis=0)/use.sum(axis=0)) / \ ((X[:, b, :]*use).sum(axis=0)/use.sum(axis=0)) use_ff = s.logical_and(use_ff, use) return FF, Xhoriz, Xhorizp, s.array(use_ff)
Example #5
Source File: optics.py From REDPy with GNU General Public License v3.0 | 5 votes |
def __init__(self, distance_pairs): self.data = distance_pairs self._n = len(self.data) self._processed = scipy.zeros((self._n, 1), dtype=bool) self._reachability = scipy.ones(self._n) * scipy.inf self._core_dist = scipy.ones(self._n) * scipy.nan self._index = scipy.array(range(self._n)) self._nneighbors = scipy.ones(self._n, dtype=int)*self._n self._cluster_id = -scipy.ones(self._n, dtype=int) self._is_core = scipy.ones(self._n, dtype=bool) self._ordered_list = []
Example #6
Source File: ocrd_anybaseocr_tiseg.py From ocrd_anybaseocr with Apache License 2.0 | 5 votes |
def pixSeedfillBinary(self, Imask, Iseed): Iseedfill = copy.deepcopy(Iseed) s = ones((3, 3)) Ijmask, k = ndimage.label(Imask, s) Ijmask2 = Ijmask * Iseedfill A = list(unique(Ijmask2)) A.remove(0) for i in range(0, len(A)): x, y = where(Ijmask == A[i]) Iseedfill[x, y] = 1 return Iseedfill
Example #7
Source File: ocrd_anybaseocr_tiseg.py From ocrd_anybaseocr with Apache License 2.0 | 5 votes |
def pixMorphSequence_mask_seed_fill_holes(self, I): Imask = self.reduction_T_1(I) Imask = self.reduction_T_1(Imask) Imask = ndimage.binary_fill_holes(Imask) Iseed = self.reduction_T_4(Imask) Iseed = self.reduction_T_3(Iseed) mask = array(ones((5, 5)), dtype=int) Iseed = ndimage.binary_opening(Iseed, mask) Iseed = self.expansion(Iseed, Imask.shape) return Imask, Iseed
Example #8
Source File: MR.py From mr_saliency with GNU General Public License v2.0 | 5 votes |
def __MR_get_adj_loop(self, labels): s = sp.amax(labels) + 1 adj = np.ones((s, s), np.bool) for i in range(labels.shape[0] - 1): for j in range(labels.shape[1] - 1): if labels[i, j] != labels[i+1, j]: adj[labels[i, j], labels[i+1, j]] = False adj[labels[i+1, j], labels[i, j]] = False if labels[i, j] != labels[i, j + 1]: adj[labels[i, j], labels[i, j+1]] = False adj[labels[i, j+1], labels[i, j]] = False if labels[i, j] != labels[i + 1, j + 1]: adj[labels[i, j] , labels[i+1, j+1]] = False adj[labels[i+1, j+1], labels[i, j]] = False if labels[i + 1, j] != labels[i, j + 1]: adj[labels[i+1, j], labels[i, j+1]] = False adj[labels[i, j+1], labels[i+1, j]] = False upper_ids = sp.unique(labels[0,:]).astype(int) right_ids = sp.unique(labels[:,labels.shape[1]-1]).astype(int) low_ids = sp.unique(labels[labels.shape[0]-1,:]).astype(int) left_ids = sp.unique(labels[:,0]).astype(int) bd = np.append(upper_ids, right_ids) bd = np.append(bd, low_ids) bd = sp.unique(np.append(bd, left_ids)) for i in range(len(bd)): for j in range(i + 1, len(bd)): adj[bd[i], bd[j]] = False adj[bd[j], bd[i]] = False return adj
Example #9
Source File: test_lobpcg.py From Computable with MIT License | 5 votes |
def ElasticRod(n): # Fixed-free elastic rod L = 1.0 le = L/n rho = 7.85e3 S = 1.e-4 E = 2.1e11 mass = rho*S*le/6. k = E*S/le A = k*(diag(r_[2.*ones(n-1),1])-diag(ones(n-1),1)-diag(ones(n-1),-1)) B = mass*(diag(r_[4.*ones(n-1),2])+diag(ones(n-1),1)+diag(ones(n-1),-1)) return A,B
Example #10
Source File: test_lobpcg.py From GraphicDesignPatternByPython with MIT License | 5 votes |
def test_regression(): # https://mail.python.org/pipermail/scipy-user/2010-October/026944.html n = 10 X = np.ones((n, 1)) A = np.identity(n) w, V = lobpcg(A, X) assert_allclose(w, [1])
Example #11
Source File: test_lobpcg.py From GraphicDesignPatternByPython with MIT License | 5 votes |
def test_trivial(): n = 5 X = ones((n, 1)) A = eye(n) compare_solutions(A, None, n)
Example #12
Source File: test_lobpcg.py From GraphicDesignPatternByPython with MIT License | 5 votes |
def ElasticRod(n): # Fixed-free elastic rod L = 1.0 le = L/n rho = 7.85e3 S = 1.e-4 E = 2.1e11 mass = rho*S*le/6. k = E*S/le A = k*(diag(r_[2.*ones(n-1),1])-diag(ones(n-1),1)-diag(ones(n-1),-1)) B = mass*(diag(r_[4.*ones(n-1),2])+diag(ones(n-1),1)+diag(ones(n-1),-1)) return A,B
Example #13
Source File: test_lobpcg.py From Computable with MIT License | 5 votes |
def test_trivial(): n = 5 X = ones((n, 1)) A = eye(n) compare_solutions(A, None, n)
Example #14
Source File: test_from_joel.py From Mathematics-of-Epidemics-on-Networks with MIT License | 4 votes |
def test_Gillespie_complex_contagion(self): def transition_rate(G, node, status, parameters): # this function needs to return the rate at which ``node`` changes status # r = parameters[0] if status[node] == 'S' and len([nbr for nbr in G.neighbors(node) if status[nbr] == 'I']) > 1: return 1 else: # status[node] might be 0 or length might be 0 or 1. return 0 def transition_choice(G, node, status, parameters): # this function needs to return the new status of node. We assume going # in that we have already calculated it is changing status. # # this function could be more elaborate if there were different # possible transitions that could happen. However, for this model, # the 'I' nodes aren't changing status, and the 'S' ones are changing to 'I' # So if we're in this function, the node must be 'S' and becoming 'I' # return 'I' def get_influence_set(G, node, status, parameters): # this function needs to return any node whose rates might change # because ``node`` has just changed status. That is, which nodes # might ``node`` influence? # # For our models the only nodes a node might affect are the susceptible neighbors. return {nbr for nbr in G.neighbors(node) if status[nbr] == 'S'} parameters = (2,) # this is the threshold. Note the comma. It is needed # for python to realize this is a 1-tuple, not just a number. # ``parameters`` is sent as a tuple so we need the comma. N = 60000 deg_dist = [2, 4, 6] * int(N / 3) G = nx.configuration_model(deg_dist) for rho in np.linspace(3. / 80, 7. / 80, 8): # 8 values from 3/80 to 7/80. print(rho) IC = defaultdict(lambda: 'S') for node in G.nodes(): if np.random.random() < rho: # there are faster ways to do this random selection IC[node] = 'I' t, S, I = EoN.Gillespie_complex_contagion(G, transition_rate, transition_choice, get_influence_set, IC, return_statuses=('S', 'I'), parameters=parameters) plt.plot(t, I) plt.savefig('test_Gillespie_complex_contagion')
Example #15
Source File: remap.py From isofit with Apache License 2.0 | 4 votes |
def remap(inputfile, labels, outputfile, flag, chunksize): """.""" ref_file = inputfile lbl_file = labels out_file = outputfile nchunk = chunksize ref_img = envi.open(ref_file+'.hdr', ref_file) ref_meta = ref_img.metadata ref_mm = ref_img.open_memmap(interleave='source', writable=False) ref = s.array(ref_mm[:, :]) lbl_img = envi.open(lbl_file+'.hdr', lbl_file) lbl_meta = lbl_img.metadata labels = lbl_img.read_band(0) nl = int(lbl_meta['lines']) ns = int(lbl_meta['samples']) nb = int(ref_meta['bands']) out_meta = dict([(k, v) for k, v in ref_meta.items()]) out_meta["samples"] = ns out_meta["bands"] = nb out_meta["lines"] = nl out_meta['data type'] = ref_meta['data type'] out_meta["interleave"] = "bil" out_img = envi.create_image(out_file+'.hdr', metadata=out_meta, ext='', force=True) out_mm = out_img.open_memmap(interleave='source', writable=True) # Iterate through image "chunks," restoring as we go for lstart in s.arange(0, nl, nchunk): print(lstart) del out_mm out_mm = out_img.open_memmap(interleave='source', writable=True) # Which labels will we extract? ignore zero index lend = min(lstart+nchunk, nl) lbl = labels[lstart:lend, :] out = flag * s.ones((lbl.shape[0], nb, lbl.shape[1])) for row in range(lbl.shape[0]): for col in range(lbl.shape[1]): out[row, :, col] = s.squeeze(ref[int(lbl[row, col]), :]) out_mm[lstart:lend, :, :] = out
Example #16
Source File: test_lobpcg.py From GraphicDesignPatternByPython with MIT License | 4 votes |
def _check_fiedler(n, p): # This is not necessarily the recommended way to find the Fiedler vector. np.random.seed(1234) col = np.zeros(n) col[1] = 1 A = toeplitz(col) D = np.diag(A.sum(axis=1)) L = D - A # Compute the full eigendecomposition using tricks, e.g. # http://www.cs.yale.edu/homes/spielman/561/2009/lect02-09.pdf tmp = np.pi * np.arange(n) / n analytic_w = 2 * (1 - np.cos(tmp)) analytic_V = np.cos(np.outer(np.arange(n) + 1/2, tmp)) _check_eigen(L, analytic_w, analytic_V) # Compute the full eigendecomposition using eigh. eigh_w, eigh_V = eigh(L) _check_eigen(L, eigh_w, eigh_V) # Check that the first eigenvalue is near zero and that the rest agree. assert_array_less(np.abs([eigh_w[0], analytic_w[0]]), 1e-14) assert_allclose(eigh_w[1:], analytic_w[1:]) # Check small lobpcg eigenvalues. X = analytic_V[:, :p] lobpcg_w, lobpcg_V = lobpcg(L, X, largest=False) assert_equal(lobpcg_w.shape, (p,)) assert_equal(lobpcg_V.shape, (n, p)) _check_eigen(L, lobpcg_w, lobpcg_V) assert_array_less(np.abs(np.min(lobpcg_w)), 1e-14) assert_allclose(np.sort(lobpcg_w)[1:], analytic_w[1:p]) # Check large lobpcg eigenvalues. X = analytic_V[:, -p:] lobpcg_w, lobpcg_V = lobpcg(L, X, largest=True) assert_equal(lobpcg_w.shape, (p,)) assert_equal(lobpcg_V.shape, (n, p)) _check_eigen(L, lobpcg_w, lobpcg_V) assert_allclose(np.sort(lobpcg_w), analytic_w[-p:]) # Look for the Fiedler vector using good but not exactly correct guesses. fiedler_guess = np.concatenate((np.ones(n//2), -np.ones(n-n//2))) X = np.vstack((np.ones(n), fiedler_guess)).T lobpcg_w, lobpcg_V = lobpcg(L, X, largest=False) # Mathematically, the smaller eigenvalue should be zero # and the larger should be the algebraic connectivity. lobpcg_w = np.sort(lobpcg_w) assert_allclose(lobpcg_w, analytic_w[:2], atol=1e-14)
Example #17
Source File: evaplib.py From hydrology with GNU General Public License v3.0 | 4 votes |
def tvardry(rho = scipy.array([]),\ cp = scipy.array([]),\ T = scipy.array([]),\ sigma_t = scipy.array([]),\ z= float(),\ d= 0.0): '''Function to calculate the sensible heat flux (H, in W/m2) from high frequency temperature measurements and its standard deviation. Source: H.F. Vugts, M.J. Waterloo, F.J. Beekman, K.F.A. Frumau and L.A. Bruijnzeel. The temperature variance method: a powerful tool in the estimation of actual evaporation rates. In J. S. Gladwell, editor, Hydrology of Warm Humid Regions, Proc. of the Yokohama Symp., IAHS Publication No. 216, pages 251-260, July 1993. NOTE: This function holds only for free convective conditions when C2*z/L >>1, where L is the Obhukov length. Input: - rho: (array of) air density values [kg m-3] - cp: (array of) specific heat at constant temperature values [J kg-1 K-1] - T: (array of) temperature data [Celsius] - sigma_t: (array of) standard deviation of temperature data [Celsius] - z: temperature measurement height above the surface [m] - d: displacement height due to vegetation, default is zero [m] Output: - H: (array of) sensible heat flux [W/m2] Example: >>> H=tvardry(rho,cp,T,sigma_t,z,d) >>> H 35.139511191461651 >>> ''' k = 0.40 # von Karman constant g = 9.81 # acceleration due to gravity [m/s^2] C1 = 2.9 # De Bruin et al., 1992 C2 = 28.4 # De Bruin et al., 1992 # L= Obhukov-length [m] #Free Convection Limit H = rho * cp * scipy.sqrt((sigma_t/C1)**3 * k * g * (z-d) / (T+273.15) * C2) #else: # including stability correction #zoverL = z/L #tvardry = rho * cp * scipy.sqrt((sigma_t/C1)**3 * k*g*(z-d) / (T+273.15) *\ # (1-C2*z/L)/(-1*z/L)) #Check if we get complex numbers (square root of negative value) and remove #I = find(zoL >= 0 | H.imag != 0); #H(I) = scipy.ones(size(I))*NaN; return H # sensible heat flux