Python numpy.float64() Examples
The following are 30
code examples of numpy.float64().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example #1
Source File: test_operator_gpu.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 6 votes |
def test_deconvolution_large_c(): problematic_c = 64 * 1024 # The deconvolution accumulates many values, so set large tolerances. tol = {np.dtype(np.float32): 1, np.dtype(np.float64): 1} def test_1D_with_width(width, grad_req): ctx_list = [{'ctx': mx.gpu(0), 'deconv_data': (1, 8, width), 'type_dict': {'deconv_data': np.float32}}, {'ctx': mx.gpu(0), 'deconv_data': (1, 8, width), 'type_dict': {'deconv_data': np.float64}}] sym = mx.sym.Deconvolution(layout='NCW', num_filter=problematic_c, kernel=(2,), name='deconv') check_consistency([sym, sym], ctx_list, tol=tol, grad_req=grad_req) def test_2D_with_width(width, grad_req): ctx_list = [{'ctx': mx.gpu(0), 'deconv_data': (1, 8, 2, width), 'type_dict': {'deconv_data': np.float32}}, {'ctx': mx.gpu(0), 'deconv_data': (1, 8, 2, width), 'type_dict': {'deconv_data': np.float64}}] sym = mx.sym.Deconvolution(layout='NCHW', num_filter=problematic_c, kernel=(2,2), name='deconv') check_consistency([sym, sym], ctx_list, tol=tol, grad_req=grad_req) # Run with different data tensor shapes to run cudnnFind() multiple times. # First, populate algo and op caches with models that always use cudnnFind() (req == 'write'). # Then run models that must avoid cached cudnnFind() results in some cases (req == 'add'). widths = [4, 16, 64] for req in ['write', 'add']: for width in widths: test_1D_with_width(width, req) test_2D_with_width(width, req)
Example #2
Source File: test_random.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 6 votes |
def test_random_seed_setting(): ctx = mx.context.current_context() seed_to_test = 1234 num_temp_seeds = 25 probs = [0.125, 0.25, 0.25, 0.0625, 0.125, 0.1875] num_samples = 100000 for dtype in ['float16', 'float32', 'float64']: seed = set_seed_variously(1, num_temp_seeds, seed_to_test) samples1 = mx.nd.random.multinomial(data=mx.nd.array(probs, ctx=ctx, dtype=dtype), shape=num_samples) seed = set_seed_variously(seed, num_temp_seeds, seed_to_test) samples2 = mx.nd.random.multinomial(data=mx.nd.array(probs, ctx=ctx, dtype=dtype), shape=num_samples) samples1np = samples1.asnumpy() set_seed_variously(seed, num_temp_seeds, seed_to_test+1) samples2np = samples2.asnumpy() assert same(samples1np, samples2np), \ "seed-setting test: `multinomial` should give the same result with the same seed" # Tests that seed setting of parallel rng is synchronous w.r.t. rng use before and after.
Example #3
Source File: test_operator_gpu.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 6 votes |
def test_embedding_with_type(): def test_embedding_helper(data_types, weight_types, low_pad, high_pad): NVD = [[20, 10, 20], [200, 10, 300]] for N, V, D in NVD: sym = mx.sym.Embedding(name='embedding', input_dim=V, output_dim=D) ctx_list = [] for data_type in data_types: for weight_type in weight_types: ctx_list.append({'ctx': mx.gpu(0), 'embedding_data': (N,), 'type_dict': {'embedding_data': data_type, 'embedding_weight': weight_type}}) ctx_list.append({'ctx': mx.cpu(0), 'embedding_data': (N,), 'type_dict': {'embedding_data': data_type, 'embedding_weight': weight_type}}) arg_params = {'embedding_data': np.random.randint(low=-low_pad, high=V+high_pad, size=(N,))} check_consistency(sym, ctx_list, grad_req={'embedding_data': 'null','embedding_weight': 'write'}, arg_params=arg_params) data_types = [np.float16, np.float32, np.float64, np.int32] weight_types = [np.float16, np.float32, np.float64] test_embedding_helper(data_types, weight_types, 5, 5) data_types = [np.uint8] weight_types = [np.float16, np.float32, np.float64] test_embedding_helper(data_types, weight_types, 0, 5)
Example #4
Source File: test_operator_gpu.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 6 votes |
def test_psroipooling_with_type(): arg_params = { 'psroipool_rois': np.array([[0, 10, 22, 161, 173], [0, 20, 15, 154, 160]])} # plain psroipooling sym = mx.sym.contrib.PSROIPooling(spatial_scale=0.0625, output_dim=2, pooled_size=3, name='psroipool') ctx_list = [{'ctx': mx.gpu(0), 'psroipool_data': (1, 18, 14, 14), 'psroipool_rois': (2, 5), 'type_dict': {'psroipool_data': np.float64, 'psroipool_rois': np.float64}}, {'ctx': mx.gpu(0), 'psroipool_data': (1, 18, 14, 14), 'psroipool_rois': (2, 5), 'type_dict': {'psroipool_data': np.float32, 'psroipool_rois': np.float32}}, {'ctx': mx.gpu(0), 'psroipool_data': (1, 18, 14, 14), 'psroipool_rois': (2, 5), 'type_dict': {'psroipool_data': np.float16, 'psroipool_rois': np.float16}}, ] check_consistency(sym, ctx_list, grad_req={'psroipool_data': 'write', 'psroipool_rois': 'null'}, arg_params=arg_params)
Example #5
Source File: test_operator_gpu.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 6 votes |
def test_elementwisesum_with_type(): dev_types = [[mx.gpu(0), [np.float64, np.float32, np.float16]], [mx.cpu(0), [np.float64, np.float32]] ] for num_args in range(1, 6): ews_arg_shape = {} for i in range(num_args): ews_arg_shape['ews_arg'+str(i)] = (2, 10) sym = mx.sym.ElementWiseSum(name='ews', num_args=num_args) ctx_list = [] for dev, types in dev_types: for dtype in types: ews_arg_dtype = {'type_dict':{}} for i in range(num_args): ews_arg_dtype['type_dict']['ews_arg'+str(i)] = dtype ctx_elem = {'ctx': dev} ctx_elem.update(ews_arg_shape) ctx_elem.update(ews_arg_dtype) ctx_list.append(ctx_elem) check_consistency(sym, ctx_list)
Example #6
Source File: test_random.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 6 votes |
def test_normal_generator(): ctx = mx.context.current_context() samples = 1000000 # Default success rate is 0.25, so 2 successes of 8 trials will pass. trials = 8 num_buckets = 5 for dtype in ['float16', 'float32', 'float64']: for mu, sigma in [(0.0, 1.0), (1.0, 5.0)]: print("ctx=%s, dtype=%s, Mu=%g, Sigma=%g:" % (ctx, dtype, mu, sigma)) buckets, probs = gen_buckets_probs_with_ppf(lambda x: ss.norm.ppf(x, mu, sigma), num_buckets) # Quantize bucket boundaries to reflect the actual dtype and adjust probs accordingly buckets = np.array(buckets, dtype=dtype).tolist() probs = [(ss.norm.cdf(buckets[i][1], mu, sigma) - ss.norm.cdf(buckets[i][0], mu, sigma)) for i in range(num_buckets)] generator_mx = lambda x: mx.nd.random.normal(mu, sigma, shape=x, ctx=ctx, dtype=dtype).asnumpy() verify_generator(generator=generator_mx, buckets=buckets, probs=probs, nsamples=samples, nrepeat=trials) generator_mx_same_seed =\ lambda x: np.concatenate( [mx.nd.random.normal(mu, sigma, shape=x // 10, ctx=ctx, dtype=dtype).asnumpy() for _ in range(10)]) verify_generator(generator=generator_mx_same_seed, buckets=buckets, probs=probs, nsamples=samples, nrepeat=trials)
Example #7
Source File: neural_programmer.py From DOTA_models with Apache License 2.0 | 6 votes |
def __init__(self): global FLAGS self.FLAGS = FLAGS self.unk_token = "UNK" self.entry_match_token = "entry_match" self.column_match_token = "column_match" self.dummy_token = "dummy_token" self.tf_data_type = {} self.tf_data_type["double"] = tf.float64 self.tf_data_type["float"] = tf.float32 self.np_data_type = {} self.np_data_type["double"] = np.float64 self.np_data_type["float"] = np.float32 self.operations_set = ["count"] + [ "prev", "next", "first_rs", "last_rs", "group_by_max", "greater", "lesser", "geq", "leq", "max", "min", "word-match" ] + ["reset_select"] + ["print"] self.word_ids = {} self.reverse_word_ids = {} self.word_count = {} self.random = Random(FLAGS.python_seed)
Example #8
Source File: graph_utils.py From DOTA_models with Apache License 2.0 | 6 votes |
def get_hardness_distribution(gtG, max_dist, min_dist, rng, trials, bins, nodes, n_ori, step_size): heuristic_fn = lambda node_ids, node_id: \ heuristic_fn_vec(nodes[node_ids, :], nodes[[node_id], :], n_ori, step_size) num_nodes = gtG.num_vertices() gt_dists = []; h_dists = []; for i in range(trials): end_node_id = rng.choice(num_nodes) gt_dist = gt.topology.shortest_distance(gt.GraphView(gtG, reversed=True), source=gtG.vertex(end_node_id), target=None, max_dist=max_dist) gt_dist = np.array(gt_dist.get_array()) ind = np.where(np.logical_and(gt_dist <= max_dist, gt_dist >= min_dist))[0] gt_dist = gt_dist[ind] h_dist = heuristic_fn(ind, end_node_id)[:,0] gt_dists.append(gt_dist) h_dists.append(h_dist) gt_dists = np.concatenate(gt_dists) h_dists = np.concatenate(h_dists) hardness = 1. - h_dists*1./gt_dists hist, _ = np.histogram(hardness, bins) hist = hist.astype(np.float64) hist = hist / np.sum(hist) return hist
Example #9
Source File: utils.py From DOTA_models with Apache License 2.0 | 6 votes |
def calc_pr(gt, out, wt=None): if wt is None: wt = np.ones((gt.size,1)) gt = gt.astype(np.float64).reshape((-1,1)) wt = wt.astype(np.float64).reshape((-1,1)) out = out.astype(np.float64).reshape((-1,1)) gt = gt*wt tog = np.concatenate([gt, wt, out], axis=1)*1. ind = np.argsort(tog[:,2], axis=0)[::-1] tog = tog[ind,:] cumsumsortgt = np.cumsum(tog[:,0]) cumsumsortwt = np.cumsum(tog[:,1]) prec = cumsumsortgt / cumsumsortwt rec = cumsumsortgt / np.sum(tog[:,0]) ap = voc_ap(rec, prec) return ap, rec, prec
Example #10
Source File: profiler_ndarray.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 6 votes |
def test_ndarray_elementwise(): np.random.seed(0) nrepeat = 10 maxdim = 4 all_type = [np.float32, np.float64, np.float16, np.uint8, np.int32] real_type = [np.float32, np.float64, np.float16] for repeat in range(nrepeat): for dim in range(1, maxdim): check_with_uniform(lambda x, y: x + y, 2, dim, type_list=all_type) check_with_uniform(lambda x, y: x - y, 2, dim, type_list=all_type) check_with_uniform(lambda x, y: x * y, 2, dim, type_list=all_type) check_with_uniform(lambda x, y: x / y, 2, dim, type_list=real_type) check_with_uniform(lambda x, y: x / y, 2, dim, rmin=1, type_list=all_type) check_with_uniform(mx.nd.sqrt, 1, dim, np.sqrt, rmin=0) check_with_uniform(mx.nd.square, 1, dim, np.square, rmin=0) check_with_uniform(lambda x: mx.nd.norm(x).asscalar(), 1, dim, np.linalg.norm)
Example #11
Source File: accountant.py From DOTA_models with Apache License 2.0 | 6 votes |
def get_privacy_spent(self, sess, target_eps=None): """Report the spending so far. Args: sess: the session to run the tensor. target_eps: the target epsilon. Unused. Returns: the list containing a single EpsDelta, with values as Python floats (as opposed to numpy.float64). This is to be consistent with MomentAccountant which can return a list of (eps, delta) pair. """ # pylint: disable=unused-argument unused_target_eps = target_eps eps_squared_sum, delta_sum = sess.run([self._eps_squared_sum, self._delta_sum]) return [EpsDelta(math.sqrt(eps_squared_sum), float(delta_sum))]
Example #12
Source File: accountant.py From DOTA_models with Apache License 2.0 | 6 votes |
def __init__(self, total_examples, moment_orders=32): """Initialize a MomentsAccountant. Args: total_examples: total number of examples. moment_orders: the order of moments to keep. """ assert total_examples > 0 self._total_examples = total_examples self._moment_orders = (moment_orders if isinstance(moment_orders, (list, tuple)) else range(1, moment_orders + 1)) self._max_moment_order = max(self._moment_orders) assert self._max_moment_order < 100, "The moment order is too large." self._log_moments = [tf.Variable(numpy.float64(0.0), trainable=False, name=("log_moments-%d" % moment_order)) for moment_order in self._moment_orders]
Example #13
Source File: test_random.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 6 votes |
def test_uniform_generator(): ctx = mx.context.current_context() for dtype in ['float16', 'float32', 'float64']: for low, high in [(-1.0, 1.0), (1.0, 3.0)]: print("ctx=%s, dtype=%s, Low=%g, High=%g:" % (ctx, dtype, low, high)) scale = high - low buckets, probs = gen_buckets_probs_with_ppf(lambda x: ss.uniform.ppf(x, loc=low, scale=scale), 5) # Quantize bucket boundaries to reflect the actual dtype and adjust probs accordingly buckets = np.array(buckets, dtype=dtype).tolist() probs = [(buckets[i][1] - buckets[i][0])/scale for i in range(5)] generator_mx = lambda x: mx.nd.random.uniform(low, high, shape=x, ctx=ctx, dtype=dtype).asnumpy() verify_generator(generator=generator_mx, buckets=buckets, probs=probs) generator_mx_same_seed = \ lambda x: np.concatenate( [mx.nd.random.uniform(low, high, shape=x // 10, ctx=ctx, dtype=dtype).asnumpy() for _ in range(10)]) verify_generator(generator=generator_mx_same_seed, buckets=buckets, probs=probs)
Example #14
Source File: _io_kernel.py From kaldi-python-io with Apache License 2.0 | 6 votes |
def read_float_vec(fd, direct_access=False): """ Read float vector(for class Vector in kaldi setup) see matrix/kaldi-vector.cc """ if direct_access: expect_binary(fd) vec_type = read_token(fd) print_info(f'\tType of the common vector: {vec_type}') if vec_type not in ["FV", "DV"]: raise RuntimeError(f"Unknown matrix type in kaldi: {vec_type}") float_size = 4 if vec_type == 'FV' else 8 float_type = np.float32 if vec_type == 'FV' else np.float64 dim = read_int32(fd) print_info(f'\tDim of the common vector: {dim}') vec_data = fd.read(float_size * dim) return np.fromstring(vec_data, dtype=float_type)
Example #15
Source File: _io_kernel.py From kaldi-python-io with Apache License 2.0 | 6 votes |
def read_common_mat(fd): """ Read common matrix(for class Matrix in kaldi setup) see matrix/kaldi-matrix.cc:: void Matrix<Real>::Read(std::istream & is, bool binary, bool add) Return a numpy ndarray object """ mat_type = read_token(fd) print_info(f'\tType of the common matrix: {mat_type}') if mat_type not in ["FM", "DM"]: raise RuntimeError(f"Unknown matrix type in kaldi: {mat_type}") float_size = 4 if mat_type == 'FM' else 8 float_type = np.float32 if mat_type == 'FM' else np.float64 num_rows = read_int32(fd) num_cols = read_int32(fd) print_info(f'\tSize of the common matrix: {num_rows} x {num_cols}') mat_data = fd.read(float_size * num_cols * num_rows) mat = np.fromstring(mat_data, dtype=float_type) return mat.reshape(num_rows, num_cols)
Example #16
Source File: utils.py From DOTA_models with Apache License 2.0 | 6 votes |
def GenerateBinomialTable(m): """Generate binomial table. Args: m: the size of the table. Returns: A two dimensional array T where T[i][j] = (i choose j), for 0<= i, j <=m. """ table = numpy.zeros((m + 1, m + 1), dtype=numpy.float64) for i in range(m + 1): table[i, 0] = 1 for i in range(1, m + 1): for j in range(1, m + 1): v = table[i - 1, j] + table[i - 1, j -1] assert not math.isnan(v) and not math.isinf(v) table[i, j] = v return tf.convert_to_tensor(table)
Example #17
Source File: test_operator_gpu.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 6 votes |
def test_pooling_with_type2(): ctx_list = [{'ctx': mx.gpu(0), 'pool_data': (10, 2, 10, 10), 'type_dict': {'pool_data': np.float64}}, {'ctx': mx.gpu(0), 'pool_data': (10, 2, 10, 10), 'type_dict': {'pool_data': np.float32}}, {'ctx': mx.gpu(0), 'pool_data': (10, 2, 10, 10), 'type_dict': {'pool_data': np.float16}}, {'ctx': mx.cpu(0), 'pool_data': (10, 2, 10, 10), 'type_dict': {'pool_data': np.float64}}, {'ctx': mx.cpu(0), 'pool_data': (10, 2, 10, 10), 'type_dict': {'pool_data': np.float32}}] sym = mx.sym.Pooling(name='pool', kernel=(3,3), stride=(2,2), pool_type='max') check_consistency(sym, ctx_list, rand_type=np.float16) sym = mx.sym.Pooling(name='pool', kernel=(3,3), pad=(1,1), pool_type='avg') check_consistency(sym, ctx_list) sym = mx.sym.Pooling(name='pool', kernel=(5,5), pad=(2,2), pool_type='max') check_consistency(sym, ctx_list, rand_type=np.float16) sym = mx.sym.Pooling(name='pool', kernel=(3,3), pad=(1,1), pool_type='sum') check_consistency(sym, ctx_list)
Example #18
Source File: test_operator_gpu.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 6 votes |
def test_bilinear_sampler_with_type(): data = mx.sym.Variable('data') grid = mx.sym.Variable('grid') sym = mx.sym.BilinearSampler(data=data, grid=grid) ctx_list = [{'ctx': mx.gpu(0), 'data': (1, 5, 10, 10), 'grid': (1, 2, 10, 10), 'type_dict': {'data': np.float64}}, {'ctx': mx.gpu(0), 'data': (1, 5, 10, 10), 'grid': (1, 2, 10, 10), 'type_dict': {'data': np.float32}}, {'ctx': mx.gpu(0), 'data': (1, 5, 10, 10), 'grid': (1, 2, 10, 10), 'type_dict': {'data': np.float16}}, {'ctx': mx.cpu(0), 'data': (1, 5, 10, 10), 'grid': (1, 2, 10, 10), 'type_dict': {'data': np.float64}}, {'ctx': mx.cpu(0), 'data': (1, 5, 10, 10), 'grid': (1, 2, 10, 10), 'type_dict': {'data': np.float32}}] check_consistency(sym, ctx_list) check_consistency(sym, ctx_list, grad_req="add")
Example #19
Source File: data_loader.py From aospy with Apache License 2.0 | 6 votes |
def _maybe_cast_to_float64(da): """Cast DataArrays to np.float64 if they are of type np.float32. Parameters ---------- da : xr.DataArray Input DataArray Returns ------- DataArray """ if da.dtype == np.float32: logging.warning('Datapoints were stored using the np.float32 datatype.' 'For accurate reduction operations using bottleneck, ' 'datapoints are being cast to the np.float64 datatype.' ' For more information see: https://github.com/pydata/' 'xarray/issues/1346') return da.astype(np.float64) else: return da
Example #20
Source File: test_infer_type.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 6 votes |
def test_infer_multiout_op2(): def test_func(a): q, l = mx.nd.linalg.gelqf(a) return mx.nd.sum(l) data32 = mx.nd.random.normal(shape=(2, 3), ctx=mx.cpu(), dtype=np.float32) data32.attach_grad() with autograd.record(): test32 = test_func(data32) test32.backward() data64 = mx.nd.Cast(data32, dtype=np.float64) data64.attach_grad() with autograd.record(): test64 = test_func(data64) test64.backward() assert_almost_equal(data64.grad.asnumpy(), data32.grad.asnumpy(), atol=1e-5, rtol=1e-5)
Example #21
Source File: common.py From cat-bbs with MIT License | 6 votes |
def draw_heatmap(img, heatmap, alpha=0.5): """Draw a heatmap overlay over an image.""" assert len(heatmap.shape) == 2 or \ (len(heatmap.shape) == 3 and heatmap.shape[2] == 1) assert img.dtype in [np.uint8, np.int32, np.int64] assert heatmap.dtype in [np.float32, np.float64] if img.shape[0:2] != heatmap.shape[0:2]: heatmap_rs = np.clip(heatmap * 255, 0, 255).astype(np.uint8) heatmap_rs = ia.imresize_single_image( heatmap_rs[..., np.newaxis], img.shape[0:2], interpolation="nearest" ) heatmap = np.squeeze(heatmap_rs) / 255.0 cmap = plt.get_cmap('jet') heatmap_cmapped = cmap(heatmap) heatmap_cmapped = np.delete(heatmap_cmapped, 3, 2) heatmap_cmapped = heatmap_cmapped * 255 mix = (1-alpha) * img + alpha * heatmap_cmapped mix = np.clip(mix, 0, 255).astype(np.uint8) return mix
Example #22
Source File: graph.py From EDeN with MIT License | 6 votes |
def _convert_dict_to_sparse_matrix(self, feature_rows): if len(feature_rows) == 0: raise Exception('ERROR: something went wrong, empty features.') data, row, col = [], [], [] for i, feature_row in enumerate(feature_rows): if len(feature_row) == 0: # case of empty feature set for a specific instance row.append(i) col.append(0) data.append(0) else: for feature in feature_row: row.append(i) col.append(feature) data.append(feature_row[feature]) shape = (max(row) + 1, self.feature_size) data_matrix = csr_matrix((data, (row, col)), shape=shape, dtype=np.float64) return data_matrix
Example #23
Source File: gaussian_moments.py From DOTA_models with Apache License 2.0 | 5 votes |
def compute_log_moment(q, sigma, steps, lmbd, verify=False, verbose=False): """Compute the log moment of Gaussian mechanism for given parameters. Args: q: the sampling ratio. sigma: the noise sigma. steps: the number of steps. lmbd: the moment order. verify: if False, only compute the symbolic version. If True, computes both symbolic and numerical solutions and verifies the results match. verbose: if True, print out debug information. Returns: the log moment with type np.float64, could be np.inf. """ moment = compute_a(sigma, q, lmbd, verbose=verbose) if verify: mp.dps = 50 moment_a_mp = compute_a_mp(sigma, q, lmbd, verbose=verbose) moment_b_mp = compute_b_mp(sigma, q, lmbd, verbose=verbose) np.testing.assert_allclose(moment, moment_a_mp, rtol=1e-10) if not np.isinf(moment_a_mp): # The following test fails for (1, np.inf)! np.testing.assert_array_less(moment_b_mp, moment_a_mp) if np.isinf(moment): return np.inf else: return np.log(moment) * steps
Example #24
Source File: test_operator_gpu.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 5 votes |
def test_upsampling_bilinear_with_type(): sym = mx.sym.UpSampling(scale=2, num_filter=2, name='up', sample_type='bilinear', num_args=1) ctx_list = [{'ctx': mx.gpu(0), 'up_data': (2, 2, 2, 10), 'type_dict': {'up_data': np.float64}}, {'ctx': mx.gpu(0), 'up_data': (2, 2, 2, 10), 'type_dict': {'up_data': np.float32}}, {'ctx': mx.gpu(0), 'up_data': (2, 2, 2, 10), 'type_dict': {'up_data': np.float16}}, {'ctx': mx.cpu(0), 'up_data': (2, 2, 2, 10), 'type_dict': {'up_data': np.float64}}, {'ctx': mx.cpu(0), 'up_data': (2, 2, 2, 10), 'type_dict': {'up_data': np.float32}}] check_consistency(sym, ctx_list)
Example #25
Source File: plot.py From DensityPeakCluster with MIT License | 5 votes |
def plot_cluster(cluster): ''' Plot scatter diagram for final points that using multi-dimensional scaling for data Args: cluster : DensityPeakCluster object ''' logger.info("PLOT: cluster result, start multi-dimensional scaling") dp = np.zeros((cluster.max_id, cluster.max_id), dtype = np.float32) cls = [] for i in xrange(1, cluster.max_id): for j in xrange(i + 1, cluster.max_id + 1): dp[i - 1, j - 1] = cluster.distances[(i, j)] dp[j - 1, i - 1] = cluster.distances[(i, j)] cls.append(cluster.cluster[i]) cls.append(cluster.cluster[cluster.max_id]) cls = np.array(cls, dtype = np.float32) fo = open(r'./tmp.txt', 'w') fo.write('\n'.join(map(str, cls))) fo.close() #seed = np.random.RandomState(seed=3) mds = manifold.MDS(max_iter=200, eps=1e-4, n_init=1,dissimilarity='precomputed') dp_mds = mds.fit_transform(dp.astype(np.float64)) logger.info("PLOT: end mds, start plot") plot_scatter_diagram(1, dp_mds[:, 0], dp_mds[:, 1], title='2D Nonclassical Multidimensional Scaling', style_list = cls) plt.savefig("2D Nonclassical Multidimensional Scaling.jpg")
Example #26
Source File: test_operator_gpu.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 5 votes |
def test_swapaxis_with_type(): sym = mx.sym.SwapAxis(name='swap', dim1=1) ctx_list = [{'ctx': mx.gpu(0), 'swap_data': (2, 2, 2, 10), 'type_dict': {'swap_data': np.float64}}, {'ctx': mx.gpu(0), 'swap_data': (2, 2, 2, 10), 'type_dict': {'swap_data': np.float32}}, {'ctx': mx.gpu(0), 'swap_data': (2, 2, 2, 10), 'type_dict': {'swap_data': np.float16}}, {'ctx': mx.cpu(0), 'swap_data': (2, 2, 2, 10), 'type_dict': {'swap_data': np.float64}}, {'ctx': mx.cpu(0), 'swap_data': (2, 2, 2, 10), 'type_dict': {'swap_data': np.float32}}] check_consistency(sym, ctx_list)
Example #27
Source File: test_operator_gpu.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 5 votes |
def test_blockgrad_with_type(): sym = mx.sym.BlockGrad(name='bg') ctx_list = [{'ctx': mx.gpu(0), 'bg_data': (2, 2, 2, 10), 'type_dict': {'bg_data': np.float64}}, {'ctx': mx.gpu(0), 'bg_data': (2, 2, 2, 10), 'type_dict': {'bg_data': np.float32}}, {'ctx': mx.gpu(0), 'bg_data': (2, 2, 2, 10), 'type_dict': {'bg_data': np.float16}}, {'ctx': mx.cpu(0), 'bg_data': (2, 2, 2, 10), 'type_dict': {'bg_data': np.float64}}, {'ctx': mx.cpu(0), 'bg_data': (2, 2, 2, 10), 'type_dict': {'bg_data': np.float32}}] check_consistency(sym, ctx_list)
Example #28
Source File: test_operator_gpu.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 5 votes |
def test_deconvolution_with_type(): # Test basic deconvolution without exercising stride, pad or dilation. # 1D deconvolution sym = mx.sym.Deconvolution(num_filter=3, kernel=(3,), name='deconv') ctx_list = [{'ctx': mx.gpu(0), 'deconv_data': (2, 2, 7), 'type_dict': {'deconv_data': np.float64}}, {'ctx': mx.gpu(0), 'deconv_data': (2, 2, 7), 'type_dict': {'deconv_data': np.float32}}, {'ctx': mx.gpu(0), 'deconv_data': (2, 2, 7), 'type_dict': {'deconv_data': np.float16}}, {'ctx': mx.cpu(0), 'deconv_data': (2, 2, 7), 'type_dict': {'deconv_data': np.float64}}, {'ctx': mx.cpu(0), 'deconv_data': (2, 2, 7), 'type_dict': {'deconv_data': np.float32}}] # wider tolerance needed for true-fp16 test above tol = {np.dtype(np.float16): 0.3, np.dtype(np.float32): 1e-3, np.dtype(np.float64): 1e-5, np.dtype(np.uint8): 0, np.dtype(np.int32): 0} check_consistency(sym, ctx_list, tol=tol) check_consistency(sym, ctx_list, tol=tol, grad_req="add") # 2D deconvolution sym = mx.sym.Deconvolution(num_filter=2, kernel=(3,3), name='deconv') ctx_list = [{'ctx': mx.gpu(0), 'deconv_data': (2, 2, 10, 10), 'type_dict': {'deconv_data': np.float64}}, {'ctx': mx.gpu(0), 'deconv_data': (2, 2, 10, 10), 'type_dict': {'deconv_data': np.float32}}, {'ctx': mx.gpu(0), 'deconv_data': (2, 2, 10, 10), 'type_dict': {'deconv_data': np.float16}}, {'ctx': mx.cpu(0), 'deconv_data': (2, 2, 10, 10), 'type_dict': {'deconv_data': np.float64}}, {'ctx': mx.cpu(0), 'deconv_data': (2, 2, 10, 10), 'type_dict': {'deconv_data': np.float32}}] # wider tolerance needed for true-fp16 test above tol = {np.dtype(np.float16): 0.3, np.dtype(np.float32): 1e-3, np.dtype(np.float64): 1e-5, np.dtype(np.uint8): 0, np.dtype(np.int32): 0} check_consistency(sym, ctx_list, tol=tol) check_consistency(sym, ctx_list, tol=tol, grad_req="add")
Example #29
Source File: test_operator_gpu.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 5 votes |
def test_upsampling_with_type(): sym = mx.sym.UpSampling(scale=2, num_filter=2, name='up', sample_type='nearest', num_args=1) ctx_list = [{'ctx': mx.gpu(0), 'up_arg0': (2, 2, 2, 10), 'type_dict': {'up_arg0': np.float64}}, {'ctx': mx.gpu(0), 'up_arg0': (2, 2, 2, 10), 'type_dict': {'up_arg0': np.float32}}, {'ctx': mx.gpu(0), 'up_arg0': (2, 2, 2, 10), 'type_dict': {'up_arg0': np.float16}}, {'ctx': mx.cpu(0), 'up_arg0': (2, 2, 2, 10), 'type_dict': {'up_arg0': np.float64}}, {'ctx': mx.cpu(0), 'up_arg0': (2, 2, 2, 10), 'type_dict': {'up_arg0': np.float32}}] check_consistency(sym, ctx_list)
Example #30
Source File: test_operator_gpu.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 5 votes |
def test_concat_with_type(): sym = mx.sym.Concat(name='concat', num_args=2) ctx_list = [{'ctx': mx.gpu(0), 'concat_arg1': (2, 10), 'concat_arg0': (2, 10), 'type_dict': {'concat_arg0': np.float64, 'concat_arg1': np.float64}}, {'ctx': mx.gpu(0), 'concat_arg1': (2, 10), 'concat_arg0': (2, 10), 'type_dict': {'concat_arg0': np.float32, 'concat_arg1': np.float32}}, {'ctx': mx.gpu(0), 'concat_arg1': (2, 10), 'concat_arg0': (2, 10), 'type_dict': {'concat_arg0': np.float16, 'concat_arg1': np.float16}}, {'ctx': mx.cpu(0), 'concat_arg1': (2, 10), 'concat_arg0': (2, 10), 'type_dict': {'concat_arg0': np.float64, 'concat_arg1': np.float64}}, {'ctx': mx.cpu(0), 'concat_arg1': (2, 10), 'concat_arg0': (2, 10), 'type_dict': {'concat_arg0': np.float32, 'concat_arg1': np.float32}}] check_consistency(sym, ctx_list)