Python numpy.column_stack() Examples
The following are 30
code examples of numpy.column_stack().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example #1
Source File: truss2d.py From pymoo with Apache License 2.0 | 7 votes |
def _evaluate(self, x, out, *args, **kwargs): # variable names for convenient access x1 = x[:, 0] x2 = x[:, 1] y = x[:, 2] # first objectives f1 = x1 * anp.sqrt(16 + anp.square(y)) + x2 * anp.sqrt((1 + anp.square(y))) # measure which are needed for the second objective sigma_ac = 20 * anp.sqrt(16 + anp.square(y)) / (y * x1) sigma_bc = 80 * anp.sqrt(1 + anp.square(y)) / (y * x2) # take the max f2 = anp.max(anp.column_stack((sigma_ac, sigma_bc)), axis=1) # define a constraint g1 = f2 - self.Smax out["F"] = anp.column_stack([f1, f2]) out["G"] = g1
Example #2
Source File: RL_brain2.py From Reinforcement_Learning_for_Traffic_Light_Control with Apache License 2.0 | 6 votes |
def store_transition(self, s, a, r, s_): if not hasattr(self, 'memory_counter'): self.memory_counter = 0 #print(s,s_.size) s=s.reshape(-1) s_=s_.reshape(-1) transition = np.hstack((s, [a, r], s_)) #transition = np.column_stack((s, [a, r], s_)) #transition = np.concatenate((s, [a, r], s_), axis=1) #transition = scipy.sparse.hstack([s, [a, r], s_]).toarray() # replace the old memory with new memory index = self.memory_counter % self.memory_size self.memory[index, :] = transition self.memory_counter += 1
Example #3
Source File: wfg.py From pymoo with Apache License 2.0 | 6 votes |
def _positional_to_optimal(self, K): k, l = self.k, self.l suffix = np.full((len(K), self.l), 0.0) X = np.column_stack([K, suffix]) X[:, self.k + self.l - 1] = 0.35 for i in range(self.k + self.l - 2, self.k - 1, -1): m = X[:, i + 1:k + l] val = m.sum(axis=1) / m.shape[1] X[:, i] = 0.35 ** ((0.02 + 1.96 * val) ** -1) ret = X * (2 * (np.arange(self.n_var) + 1)) return ret # --------------------------------------------------------------------------------------------------------- # TRANSFORMATIONS # ---------------------------------------------------------------------------------------------------------
Example #4
Source File: point_crossover.py From pymoo with Apache License 2.0 | 6 votes |
def _do(self, problem, X, **kwargs): # get the X of parents and count the matings _, n_matings, n_var = X.shape # start point of crossover r = np.row_stack([np.random.permutation(n_var - 1) + 1 for _ in range(n_matings)])[:, :self.n_points] r.sort(axis=1) r = np.column_stack([r, np.full(n_matings, n_var)]) # the mask do to the crossover M = np.full((n_matings, n_var), False) # create for each individual the crossover range for i in range(n_matings): j = 0 while j < r.shape[1] - 1: a, b = r[i, j], r[i, j + 1] M[i, a:b] = True j += 2 _X = crossover_mask(X, M) return _X
Example #5
Source File: performance.py From pymoo with Apache License 2.0 | 6 votes |
def geometric_mean_var(z): for row in np.eye(z.shape[1]): if not np.any(np.all(row == z, axis=1)): z = np.row_stack([z, row]) n_points, n_dim = z.shape D = vectorized_cdist(z, z) np.fill_diagonal(D, np.inf) k = n_dim - 1 I = D.argsort(axis=1)[:, :k] first = np.column_stack([np.arange(n_points) for _ in range(k)]) val = gmean(D[first, I], axis=1) return val.var()
Example #6
Source File: performance.py From pymoo with Apache License 2.0 | 6 votes |
def mean_mean(z): for row in np.eye(z.shape[1]): if not np.any(np.all(row == z, axis=1)): z = np.row_stack([z, row]) n_points, n_dim = z.shape D = vectorized_cdist(z, z) np.fill_diagonal(D, np.inf) k = n_dim - 1 I = D.argsort(axis=1)[:, :k] first = np.column_stack([np.arange(n_points) for _ in range(k)]) val = np.mean(D[first, I], axis=1) return val.mean()
Example #7
Source File: reference_direction.py From pymoo with Apache License 2.0 | 6 votes |
def map_onto_unit_simplex(rnd, method): n_points, n_dim = rnd.shape if method == "sum": ret = rnd / rnd.sum(axis=1)[:, None] elif method == "kraemer": M = sys.maxsize rnd *= M rnd = rnd[:, :n_dim - 1] rnd = np.column_stack([np.zeros(n_points), rnd, np.full(n_points, M)]) rnd = np.sort(rnd, axis=1) ret = np.full((n_points, n_dim), np.nan) for i in range(1, n_dim + 1): ret[:, i - 1] = rnd[:, i] - rnd[:, i - 1] ret /= M else: raise Exception("Invalid unit simplex mapping!") return ret
Example #8
Source File: test_gradient.py From pymoo with Apache License 2.0 | 6 votes |
def _evaluate(self, x, out, *args, **kwargs): f1 = x[:, 0] c = np.sum(x[:, 1:], axis=1) g = 1.0 + 9.0 * c / (self.n_var - 1) f2 = g * (1 - np.power(f1 * 1.0 / g, 0.5) - (f1 * 1.0 / g) * np.sin(10 * np.pi * f1)) out["F"] = np.column_stack([f1, f2]) if "dF" in out: dF = np.zeros([x.shape[0], self.n_obj, self.n_var], dtype=np.float) dF[:, 0, 0], dF[:, 0, 1:] = 1, 0 dF[:, 1, 0] = -0.5 * np.sqrt(g / x[:, 0]) - np.sin(10 * np.pi * x[:, 0]) - 10 * np.pi * x[:, 0] * np.cos( 10 * np.pi * x[:, 0]) dF[:, 1, 1:] = (9 / (self.n_var - 1)) * (1 - 0.5 * np.sqrt(x[:, 0] / g))[:, None] out["dF"] = dF
Example #9
Source File: Kaiser 1962 - CaF2.py From refractiveindex.info-scripts with GNU General Public License v3.0 | 6 votes |
def SaveYML(w_um, RefInd, filename, references='', comments=''): header = np.empty(9, dtype=object) header[0] = '# this file is part of refractiveindex.info database' header[1] = '# refractiveindex.info database is in the public domain' header[2] = '# copyright and related rights waived via CC0 1.0' header[3] = '' header[4] = 'REFERENCES:' + references header[5] = 'COMMENTS:' + comments header[6] = 'DATA:' header[7] = ' - type: tabulated nk' header[8] = ' data: |' export = np.column_stack((w_um, np.real(RefInd), np.imag(RefInd))) np.savetxt(filename, export, fmt='%4.2f %#.4g %#.4g', delimiter=' ', header='\n'.join(header), comments='',newline='\n ') return ############################################################################### ## Wavelengths to sample ##
Example #10
Source File: Tsuda 2018 - PMMA (BB model).py From refractiveindex.info-scripts with GNU General Public License v3.0 | 6 votes |
def SaveYML(w_um, RefInd, filename, references='', comments=''): header = np.empty(9, dtype=object) header[0] = '# this file is part of refractiveindex.info database' header[1] = '# refractiveindex.info database is in the public domain' header[2] = '# copyright and related rights waived via CC0 1.0' header[3] = '' header[4] = 'REFERENCES:' + references header[5] = 'COMMENTS:' + comments header[6] = 'DATA:' header[7] = ' - type: tabulated nk' header[8] = ' data: |' export = np.column_stack((w_um, np.real(RefInd), np.imag(RefInd))) np.savetxt(filename, export, fmt='%4.2f %#.4g %#.3e', delimiter=' ', header='\n'.join(header), comments='',newline='\n ') return ############################################################################### ## Wavelengths to sample ##
Example #11
Source File: Zhang 1998 - Kapton.py From refractiveindex.info-scripts with GNU General Public License v3.0 | 6 votes |
def SaveYML(w_um, RefInd, filename, references='', comments=''): header = np.empty(9, dtype=object) header[0] = '# this file is part of refractiveindex.info database' header[1] = '# refractiveindex.info database is in the public domain' header[2] = '# copyright and related rights waived via CC0 1.0' header[3] = '' header[4] = 'REFERENCES:' + references header[5] = 'COMMENTS:' + comments header[6] = 'DATA:' header[7] = ' - type: tabulated nk' header[8] = ' data: |' export = np.column_stack((w_um, np.real(RefInd), np.imag(RefInd))) np.savetxt(filename, export, fmt='%4.3f %#.4g %#.3e', delimiter=' ', header='\n'.join(header), comments='',newline='\n ') return ############################################################################### ## Wavelengths to sample ##
Example #12
Source File: Kaiser 1962 - BaF2.py From refractiveindex.info-scripts with GNU General Public License v3.0 | 6 votes |
def SaveYML(w_um, RefInd, filename, references='', comments=''): header = np.empty(9, dtype=object) header[0] = '# this file is part of refractiveindex.info database' header[1] = '# refractiveindex.info database is in the public domain' header[2] = '# copyright and related rights waived via CC0 1.0' header[3] = '' header[4] = 'REFERENCES:' + references header[5] = 'COMMENTS:' + comments header[6] = 'DATA:' header[7] = ' - type: tabulated nk' header[8] = ' data: |' export = np.column_stack((w_um, np.real(RefInd), np.imag(RefInd))) np.savetxt(filename, export, fmt='%4.2f %#.4g %#.4g', delimiter=' ', header='\n'.join(header), comments='',newline='\n ') return ############################################################################### ## Wavelengths to sample ##
Example #13
Source File: ext_dmdt.py From feets with MIT License | 6 votes |
def fit(self, magnitude, time, dt_bins, dm_bins): def delta_calc(idx): t0 = time[idx] m0 = magnitude[idx] deltat = time[idx + 1 :] - t0 deltam = magnitude[idx + 1 :] - m0 deltat[np.where(deltat < 0)] *= -1 deltam[np.where(deltat < 0)] *= -1 return np.column_stack((deltat, deltam)) lc_len = len(time) n_vals = int(0.5 * lc_len * (lc_len - 1)) deltas = np.vstack(tuple(delta_calc(idx) for idx in range(lc_len - 1))) deltat = deltas[:, 0] deltam = deltas[:, 1] bins = [dt_bins, dm_bins] counts = np.histogram2d(deltat, deltam, bins=bins, normed=False)[0] result = np.fix(255.0 * counts / n_vals + 0.999).astype(int) return {"DMDT": result}
Example #14
Source File: beyeler2019.py From pulse2percept with BSD 3-Clause "New" or "Revised" License | 6 votes |
def calc_axon_contribution(self, axons): xyret = np.column_stack((self.grid.xret.ravel(), self.grid.yret.ravel())) # Only include axon segments that are < `max_d2` from the soma. These # axon segments will have `sensitivity` > `self.min_ax_sensitivity`: max_d2 = -2.0 * self.axlambda ** 2 * np.log(self.min_ax_sensitivity) axon_contrib = [] for xy, bundle in zip(xyret, axons): idx = np.argmin((bundle[:, 0] - xy[0]) ** 2 + (bundle[:, 1] - xy[1]) ** 2) # Cut off the part of the fiber that goes beyond the soma: axon = np.flipud(bundle[0: idx + 1, :]) # Add the exact location of the soma: axon = np.insert(axon, 0, xy, axis=0) # For every axon segment, calculate distance from soma by # summing up the individual distances between neighboring axon # segments (by "walking along the axon"): d2 = np.cumsum(np.diff(axon[:, 0], axis=0) ** 2 + np.diff(axon[:, 1], axis=0) ** 2) idx_d2 = d2 < max_d2 sensitivity = np.exp(-d2[idx_d2] / (2.0 * self.axlambda ** 2)) idx_d2 = np.insert(idx_d2, 0, False) contrib = np.column_stack((axon[idx_d2, :], sensitivity)) axon_contrib.append(contrib) return axon_contrib
Example #15
Source File: test_beyeler2019.py From pulse2percept with BSD 3-Clause "New" or "Revised" License | 6 votes |
def test_AxonMapModel_calc_axon_contribution(engine): model = AxonMapModel(xystep=2, engine=engine, n_axons=10, xrange=(-20, 20), yrange=(-15, 15), axons_range=(-30, 30)) model.build() xyret = np.column_stack((model.spatial.grid.xret.ravel(), model.spatial.grid.yret.ravel())) bundles = model.spatial.grow_axon_bundles() axons = model.spatial.find_closest_axon(bundles) contrib = model.spatial.calc_axon_contribution(axons) # Check lambda math: for ax, xy in zip(contrib, xyret): axon = np.insert(ax, 0, list(xy) + [0], axis=0) d2 = np.cumsum(np.diff(axon[:, 0], axis=0) ** 2 + np.diff(axon[:, 1], axis=0) ** 2) sensitivity = np.exp(-d2 / (2.0 * model.spatial.axlambda ** 2)) npt.assert_almost_equal(sensitivity, ax[:, 2])
Example #16
Source File: RL_brain.py From Reinforcement_Learning_for_Traffic_Light_Control with Apache License 2.0 | 6 votes |
def store_transition(self, s, a, r, s_): if not hasattr(self, 'memory_counter'): self.memory_counter = 0 #print(s,s_.size) s=s.reshape(-1) s_=s_.reshape(-1) transition = np.hstack((s, [a, r], s_)) #transition = np.column_stack((s, [a, r], s_)) #transition = np.concatenate((s, [a, r], s_), axis=1) #transition = scipy.sparse.hstack([s, [a, r], s_]).toarray() # replace the old memory with new memory index = self.memory_counter % self.memory_size self.memory[index, :] = transition self.memory_counter += 1
Example #17
Source File: RL_brain.py From Reinforcement_Learning_for_Traffic_Light_Control with Apache License 2.0 | 6 votes |
def store_transition(self, s, a, r, s_): if not hasattr(self, 'memory_counter'): self.memory_counter = 0 #print(s,s_.size) s=s.reshape(-1) s_=s_.reshape(-1) transition = np.hstack((s, [a, r], s_)) #transition = np.column_stack((s, [a, r], s_)) #transition = np.concatenate((s, [a, r], s_), axis=1) #transition = scipy.sparse.hstack([s, [a, r], s_]).toarray() # replace the old memory with new memory index = self.memory_counter % self.memory_size self.memory[index, :] = transition self.memory_counter += 1
Example #18
Source File: RL_brain.py From Reinforcement_Learning_for_Traffic_Light_Control with Apache License 2.0 | 6 votes |
def store_transition(self, s, a, r, s_): self.lo.acquire() s=s.reshape(-1) s_=s_.reshape(-1) transition = np.hstack((s, [a, r], s_)) #transition = np.column_stack((s, [a, r], s_)) #transition = np.concatenate((s, [a, r], s_), axis=1) #transition = scipy.sparse.hstack([s, [a, r], s_]).toarray() # replace the old memory with new memory index = self.memory_counter % self.memory_size self.memory[index, :] = transition self.memory_counter += 1 self.lo.release() # print(index)
Example #19
Source File: RL_brain2.py From Reinforcement_Learning_for_Traffic_Light_Control with Apache License 2.0 | 6 votes |
def store_transition(self, s, a, r, s_): if not hasattr(self, 'memory_counter'): self.memory_counter = 0 #print(s,s_.size) s=s.reshape(-1) s_=s_.reshape(-1) transition = np.hstack((s, [a, r], s_)) #transition = np.column_stack((s, [a, r], s_)) #transition = np.concatenate((s, [a, r], s_), axis=1) #transition = scipy.sparse.hstack([s, [a, r], s_]).toarray() # replace the old memory with new memory index = self.memory_counter % self.memory_size self.memory[index, :] = transition self.memory_counter += 1
Example #20
Source File: Tsuda 2018 - PMMA (LD model).py From refractiveindex.info-scripts with GNU General Public License v3.0 | 6 votes |
def SaveYML(w_um, RefInd, filename, references='', comments=''): header = np.empty(9, dtype=object) header[0] = '# this file is part of refractiveindex.info database' header[1] = '# refractiveindex.info database is in the public domain' header[2] = '# copyright and related rights waived via CC0 1.0' header[3] = '' header[4] = 'REFERENCES:' + references header[5] = 'COMMENTS:' + comments header[6] = 'DATA:' header[7] = ' - type: tabulated nk' header[8] = ' data: |' export = np.column_stack((w_um, np.real(RefInd), np.imag(RefInd))) np.savetxt(filename, export, fmt='%4.2f %#.4g %#.3e', delimiter=' ', header='\n'.join(header), comments='',newline='\n ') return ############################################################################### ## Wavelengths to sample ##
Example #21
Source File: metric.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 6 votes |
def update(self, labels, preds): """Updates the internal evaluation result. Parameters ---------- labels : list of `NDArray` The labels of the data. preds : list of `NDArray` Predicted values. """ mx.metric.check_label_shapes(labels, preds) for label, pred in zip(labels, preds): label = label.asnumpy() pred = pred.asnumpy() pred = np.column_stack((1 - pred, pred)) label = label.ravel() num_examples = pred.shape[0] assert label.shape[0] == num_examples, (label.shape[0], num_examples) prob = pred[np.arange(num_examples, dtype=np.int64), np.int64(label)] self.sum_metric += (-np.log(prob + self.eps)).sum() self.num_inst += num_examples
Example #22
Source File: so_mmga7.py From pymoo with Apache License 2.0 | 5 votes |
def plot(algorithm): pop = algorithm.pop sc = Scatter(title=algorithm.n_gen) sc.add(curve(algorithm.problem), plot_type="line", color="black") sc.add(np.column_stack([pop.get("X"), pop.get("F")]), color="red") sc.do()
Example #23
Source File: so_mmga.py From pymoo with Apache License 2.0 | 5 votes |
def plot(algorithm): pop = algorithm.pop sc = Scatter(title=algorithm.n_gen) sc.add(curve(algorithm.problem), plot_type="line", color="black") sc.add(np.column_stack([pop.get("X"), pop.get("F")]), color="red") sc.do()
Example #24
Source File: so_mmga3.py From pymoo with Apache License 2.0 | 5 votes |
def plot(algorithm): pop = algorithm.pop sc = Scatter(title=algorithm.n_gen) sc.add(curve(algorithm.problem), plot_type="line", color="black") sc.add(np.column_stack([pop.get("X"), pop.get("F")]), color="red") sc.do()
Example #25
Source File: test_algorithms.py From pymoo with Apache License 2.0 | 5 votes |
def test_no_pareto_front_given(self): class ZDT1NoPF(ZDT): def _evaluate(self, x, out, *args, **kwargs): f1 = x[:, 0] g = 1 + 9.0 / (self.n_var - 1) * np.sum(x[:, 1:], axis=1) f2 = g * (1 - np.power((f1 / g), 0.5)) out["F"] = np.column_stack([f1, f2]) algorithm = NSGA2(pop_size=100, eliminate_duplicates=True) minimize(ZDT1NoPF(), algorithm, ('n_gen', 20), seed=1, verbose=True)
Example #26
Source File: test_algorithms.py From pymoo with Apache License 2.0 | 5 votes |
def test_no_feasible_solution_found(self): class MyProblem(Problem): def __init__(self): super().__init__(n_var=2, n_obj=1, n_constr=36, xl=np.array([0, 0]), xu=np.array([100, 100])) def _evaluate(self, x, out, *args, **kwargs): f1 = x[:, 0] + x[:, 1] out["F"] = np.column_stack([f1]) out["G"] = np.ones(len(x)) res = minimize(MyProblem(), NSGA2(), ("n_gen", 10), seed=1) self.assertEqual(res.X, None) self.assertEqual(res.F, None) self.assertEqual(res.G, None) res = minimize(MyProblem(), NSGA2(), ("n_gen", 10), seed=1, verbose=True, return_least_infeasible=True, save_history=True) self.assertAlmostEqual(res.CV[0], 1.0)
Example #27
Source File: io.py From EarthSim with BSD 3-Clause "New" or "Revised" License | 5 votes |
def save_shapefile(cdsdata, path, template): """ Accepts bokeh ColumnDataSource data and saves it as a shapefile, using an existing template to determine the required schema. """ collection = fiona.open(template) arrays = [np.column_stack([xs, ys]) for xs, ys in zip(cdsdata['xs'], cdsdata['ys'])] polys = gv.Polygons(arrays, crs=ccrs.GOOGLE_MERCATOR) projected = gv.operation.project_path(polys, projection=ccrs.PlateCarree()) data = [list(map(tuple, arr)) for arr in projected.split(datatype='array')] shape_data = list(collection.items())[0][1] shape_data['geometry']['coordinates'] = data with fiona.open(path, 'w', collection.driver, collection.schema, collection.crs) as c: c.write(shape_data)
Example #28
Source File: pascalvoc_util.py From cnn-levelset with MIT License | 5 votes |
def load_annotations(self, img_names): y = [np.column_stack(self.get_class_bbox(img)) for img in img_names[self.img_idx]] return np.array(y)
Example #29
Source File: wfg.py From pymoo with Apache License 2.0 | 5 votes |
def t1(x, n): ret = [] for i in range(0, n - 1): aux = _reduction_weighted_sum_uniform(x[:, i + 1:]) ret.append(_transformation_param_dependent(x[:, i], aux)) return np.column_stack(ret)
Example #30
Source File: wfg.py From pymoo with Apache License 2.0 | 5 votes |
def t3(x, m, n, k): gap = k // (m - 1) t = [_reduction_non_sep(x[:, (m - 1) * gap: (m * gap)], gap) for m in range(1, m)] t.append(_reduction_non_sep(x[:, k:], n - k)) return np.column_stack(t)