Python pylab.savefig() Examples
The following are 30
code examples of pylab.savefig().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
pylab
, or try the search function
.
Example #1
Source File: test_turbo_seti.py From turbo_seti with MIT License | 7 votes |
def plot_hits(filename_fil, filename_dat): """ Plot the hits in a .dat file. """ table = find_event.read_dat(filename_dat) print(table) plt.figure(figsize=(10, 8)) N_hit = len(table) if N_hit > 10: print("Warning: More than 10 hits found. Only plotting first 10") N_hit = 10 for ii in range(N_hit): plt.subplot(N_hit, 1, ii+1) plot_event.plot_hit(filename_fil, filename_dat, ii) plt.tight_layout() plt.savefig(filename_dat.replace('.dat', '.png')) plt.show()
Example #2
Source File: func.py From NEUCOGAR with GNU General Public License v2.0 | 6 votes |
def save(GUI): global txtResultPath if GUI: import pylab as pl import nest.raster_plot import nest.voltage_trace logger.debug("Saving IMAGES into {0}".format(SAVE_PATH)) for key in spikedetectors: try: nest.raster_plot.from_device(spikedetectors[key], hist=True) pl.savefig(f_name_gen(SAVE_PATH, "spikes_" + key.lower()), dpi=dpi_n, format='png') pl.close() except Exception: print(" * * * from {0} is NOTHING".format(key)) txtResultPath = SAVE_PATH + 'txt/' logger.debug("Saving TEXT into {0}".format(txtResultPath)) if not os.path.exists(txtResultPath): os.mkdir(txtResultPath) for key in spikedetectors: save_spikes(spikedetectors[key], name=key) with open(txtResultPath + 'timeSimulation.txt', 'w') as f: for item in times: f.write(item)
Example #3
Source File: cartpole_a3c.py From reinforcement-learning with MIT License | 6 votes |
def train(self): # self.load_model('./save_model/cartpole_a3c.h5') agents = [Agent(i, self.actor, self.critic, self.optimizer, self.env_name, self.discount_factor, self.action_size, self.state_size) for i in range(self.threads)] for agent in agents: agent.start() while True: time.sleep(20) plot = scores[:] pylab.plot(range(len(plot)), plot, 'b') pylab.savefig("./save_graph/cartpole_a3c.png") self.save_model('./save_model/cartpole_a3c.h5')
Example #4
Source File: analysis.py From smallrnaseq with GNU General Public License v3.0 | 6 votes |
def summarise_reads(path): """Count reads in all files in path""" resultfile = os.path.join(path, 'read_stats.csv') files = glob.glob(os.path.join(path,'*.fastq')) vals=[] rl=[] for f in files: label = os.path.splitext(os.path.basename(f))[0] s = utils.fastq_to_dataframe(f) l = len(s) vals.append([label,l]) print (label, l) df = pd.DataFrame(vals,columns=['path','total reads']) df.to_csv(resultfile) df.plot(x='path',y='total reads',kind='barh') plt.tight_layout() plt.savefig(os.path.join(path,'total_reads.png')) #df = pd.concat() return df
Example #5
Source File: plot_contrast_sensitive.py From SceneChangeDet with MIT License | 6 votes |
def main(): l2_base_dir = '/media/admin228/00027E210001A5BD/train_pytorch/change_detection/CMU/prediction_cons/l2_5,6,7/roc' cos_base_dir = '/media/admin228/00027E210001A5BD/train_pytorch/change_detection/CMU/prediction_cons/dist_cos_new_5,6,7/roc' CSF_dir = os.path.join(l2_base_dir) CSF_fig_dir = os.path.join(l2_base_dir,'fig.png') end_number = 22 csf_conv5_l2_ls,csf_fc6_l2_ls,csf_fc7_l2_ls,x_l2 = get_csf_ls(l2_base_dir,end_number) csf_conv5_cos_ls,csf_fc6_cos_ls,csf_fc7_cos_ls,x_cos = get_csf_ls(cos_base_dir,end_number) Fig = pylab.figure() setFigLinesBW(Fig) #pylab.plot(x,csf_conv4_ls, color='k',label= 'conv4') pylab.plot(x_l2,csf_conv5_l2_ls, color='m',label= 'l2:conv5') pylab.plot(x_l2,csf_fc6_l2_ls, color = 'b',label= 'l2:fc6') pylab.plot(x_l2,csf_fc7_l2_ls, color = 'g',label= 'l2:fc7') pylab.plot(x_cos,csf_conv5_cos_ls, color='c',label= 'cos:conv5') pylab.plot(x_cos,csf_fc6_cos_ls, color = 'r',label= 'cos:fc6') pylab.plot(x_cos,csf_fc7_cos_ls, color = 'y',label= 'cos:fc7') pylab.legend(loc='lower right', prop={'size': 10}) pylab.ylabel('RMS Contrast', fontsize=14) pylab.xlabel('Epoch', fontsize=14) pylab.savefig(CSF_fig_dir)
Example #6
Source File: pncview.py From pseudonetcdf with GNU Lesser General Public License v3.0 | 6 votes |
def plot(ifile, varkey, options, before='', after=''): import pylab as pl outpath = getattr(options, 'outpath', '.') var = ifile.variables[varkey] dims = [(k, l) for l, k in zip(var[:].shape, var.dimensions) if l > 1] if len(dims) > 1: raise ValueError( 'Plots can have only 1 non-unity dimensions; got %d - %s' % (len(dims), str(dims))) exec(before) ax = pl.gca() print(varkey, end='') if options.logscale: ax.set_yscale('log') ax.plot(var[:].squeeze()) ax.set_xlabel('unknown') ax.set_ylabel(getattr(var, 'standard_name', varkey).strip() + ' ' + var.units.strip()) fmt = 'png' figpath = os.path.join(outpath + '_1d_' + varkey + '.' + fmt) exec(after) pl.savefig(figpath) print('Saved fig', figpath) return figpath
Example #7
Source File: image_ocr.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def on_epoch_end(self, epoch, logs={}): self.model.save_weights(os.path.join(self.output_dir, 'weights%02d.h5' % (epoch))) self.show_edit_distance(256) word_batch = next(self.text_img_gen)[0] res = decode_batch(self.test_func, word_batch['the_input'][0:self.num_display_words]) if word_batch['the_input'][0].shape[0] < 256: cols = 2 else: cols = 1 for i in range(self.num_display_words): pylab.subplot(self.num_display_words // cols, cols, i + 1) if K.image_data_format() == 'channels_first': the_input = word_batch['the_input'][i, 0, :, :] else: the_input = word_batch['the_input'][i, :, :, 0] pylab.imshow(the_input.T, cmap='Greys_r') pylab.xlabel('Truth = \'%s\'\nDecoded = \'%s\'' % (word_batch['source_str'][i], res[i])) fig = pylab.gcf() fig.set_size_inches(10, 13) pylab.savefig(os.path.join(self.output_dir, 'e%02d.png' % (epoch))) pylab.close()
Example #8
Source File: image_ocr.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def on_epoch_end(self, epoch, logs={}): self.model.save_weights(os.path.join(self.output_dir, 'weights%02d.h5' % (epoch))) self.show_edit_distance(256) word_batch = next(self.text_img_gen)[0] res = decode_batch(self.test_func, word_batch['the_input'][0:self.num_display_words]) if word_batch['the_input'][0].shape[0] < 256: cols = 2 else: cols = 1 for i in range(self.num_display_words): pylab.subplot(self.num_display_words // cols, cols, i + 1) if K.image_data_format() == 'channels_first': the_input = word_batch['the_input'][i, 0, :, :] else: the_input = word_batch['the_input'][i, :, :, 0] pylab.imshow(the_input.T, cmap='Greys_r') pylab.xlabel('Truth = \'%s\'\nDecoded = \'%s\'' % (word_batch['source_str'][i], res[i])) fig = pylab.gcf() fig.set_size_inches(10, 13) pylab.savefig(os.path.join(self.output_dir, 'e%02d.png' % (epoch))) pylab.close()
Example #9
Source File: image_ocr.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def on_epoch_end(self, epoch, logs={}): self.model.save_weights(os.path.join(self.output_dir, 'weights%02d.h5' % (epoch))) self.show_edit_distance(256) word_batch = next(self.text_img_gen)[0] res = decode_batch(self.test_func, word_batch['the_input'][0:self.num_display_words]) if word_batch['the_input'][0].shape[0] < 256: cols = 2 else: cols = 1 for i in range(self.num_display_words): pylab.subplot(self.num_display_words // cols, cols, i + 1) if K.image_data_format() == 'channels_first': the_input = word_batch['the_input'][i, 0, :, :] else: the_input = word_batch['the_input'][i, :, :, 0] pylab.imshow(the_input.T, cmap='Greys_r') pylab.xlabel('Truth = \'%s\'\nDecoded = \'%s\'' % (word_batch['source_str'][i], res[i])) fig = pylab.gcf() fig.set_size_inches(10, 13) pylab.savefig(os.path.join(self.output_dir, 'e%02d.png' % (epoch))) pylab.close()
Example #10
Source File: image_ocr.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def on_epoch_end(self, epoch, logs={}): self.model.save_weights(os.path.join(self.output_dir, 'weights%02d.h5' % (epoch))) self.show_edit_distance(256) word_batch = next(self.text_img_gen)[0] res = decode_batch(self.test_func, word_batch['the_input'][0:self.num_display_words]) if word_batch['the_input'][0].shape[0] < 256: cols = 2 else: cols = 1 for i in range(self.num_display_words): pylab.subplot(self.num_display_words // cols, cols, i + 1) if K.image_data_format() == 'channels_first': the_input = word_batch['the_input'][i, 0, :, :] else: the_input = word_batch['the_input'][i, :, :, 0] pylab.imshow(the_input.T, cmap='Greys_r') pylab.xlabel('Truth = \'%s\'\nDecoded = \'%s\'' % (word_batch['source_str'][i], res[i])) fig = pylab.gcf() fig.set_size_inches(10, 13) pylab.savefig(os.path.join(self.output_dir, 'e%02d.png' % (epoch))) pylab.close()
Example #11
Source File: experiment.py From double-dqn with MIT License | 6 votes |
def plot_evaluation_episode_reward(): pylab.clf() sns.set_context("poster") pylab.plot(0, 0) episodes = [0] average_scores = [0] median_scores = [0] for n in xrange(len(csv_evaluation)): params = csv_evaluation[n] episodes.append(params[0]) average_scores.append(params[1]) median_scores.append(params[2]) pylab.plot(episodes, average_scores, sns.xkcd_rgb["windows blue"], lw=2) pylab.xlabel("episodes") pylab.ylabel("average score") pylab.savefig("%s/evaluation_episode_average_reward.png" % args.plot_dir) pylab.clf() pylab.plot(0, 0) pylab.plot(episodes, median_scores, sns.xkcd_rgb["windows blue"], lw=2) pylab.xlabel("episodes") pylab.ylabel("median score") pylab.savefig("%s/evaluation_episode_median_reward.png" % args.plot_dir)
Example #12
Source File: doscalars.py From pysynphot with BSD 3-Clause "New" or "Revised" License | 6 votes |
def plotdata(obsmode,spectrum,val,odict,sdict, instr,fieldname,outdir,outname): isetting=P.isinteractive() P.ioff() P.clf() P.plot(obsmode,val,'.') P.ylabel('(pysyn-syn)/syn') P.xlabel('obsmode') P.title("%s: %s"%(instr,fieldname)) P.savefig(os.path.join(outdir,outname+'_obsmode.ps')) P.clf() P.plot(spectrum,val,'.') P.ylabel('(pysyn-syn)/syn') P.xlabel('spectrum') P.title("%s: %s"%(instr,fieldname)) P.savefig(os.path.join(outdir,outname+'_spectrum.ps')) matplotlib.interactive(isetting)
Example #13
Source File: empirical_line.py From isofit with Apache License 2.0 | 6 votes |
def _plot_example(xv, yv, b): """Plot for debugging purposes.""" matplotlib.rcParams['font.family'] = "serif" matplotlib.rcParams['font.sans-serif'] = "Times" matplotlib.rcParams["legend.edgecolor"] = "None" matplotlib.rcParams["axes.spines.top"] = False matplotlib.rcParams["axes.spines.bottom"] = True matplotlib.rcParams["axes.spines.left"] = True matplotlib.rcParams["axes.spines.right"] = False matplotlib.rcParams['axes.grid'] = True matplotlib.rcParams['axes.grid.axis'] = 'both' matplotlib.rcParams['axes.grid.which'] = 'major' matplotlib.rcParams['legend.edgecolor'] = '1.0' plt.plot(xv[:, 113], yv[:, 113], 'ko') plt.plot(xv[:, 113], xv[:, 113] * b[113, 1] + b[113, 0], 'nneighbors') # plt.plot(x[113], x[113]*b[113, 1] + b[113, 0], 'ro') plt.grid(True) plt.xlabel('Radiance, $\mu{W }nm^{-1} sr^{-1} cm^{-2}$') plt.ylabel('Reflectance') plt.show(block=True) plt.savefig('empirical_line.pdf')
Example #14
Source File: image_ocr.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def on_epoch_end(self, epoch, logs={}): self.model.save_weights(os.path.join(self.output_dir, 'weights%02d.h5' % (epoch))) self.show_edit_distance(256) word_batch = next(self.text_img_gen)[0] res = decode_batch(self.test_func, word_batch['the_input'][0:self.num_display_words]) if word_batch['the_input'][0].shape[0] < 256: cols = 2 else: cols = 1 for i in range(self.num_display_words): pylab.subplot(self.num_display_words // cols, cols, i + 1) if K.image_data_format() == 'channels_first': the_input = word_batch['the_input'][i, 0, :, :] else: the_input = word_batch['the_input'][i, :, :, 0] pylab.imshow(the_input.T, cmap='Greys_r') pylab.xlabel('Truth = \'%s\'\nDecoded = \'%s\'' % (word_batch['source_str'][i], res[i])) fig = pylab.gcf() fig.set_size_inches(10, 13) pylab.savefig(os.path.join(self.output_dir, 'e%02d.png' % (epoch))) pylab.close()
Example #15
Source File: image_ocr.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def on_epoch_end(self, epoch, logs={}): self.model.save_weights(os.path.join(self.output_dir, 'weights%02d.h5' % (epoch))) self.show_edit_distance(256) word_batch = next(self.text_img_gen)[0] res = decode_batch(self.test_func, word_batch['the_input'][0:self.num_display_words]) if word_batch['the_input'][0].shape[0] < 256: cols = 2 else: cols = 1 for i in range(self.num_display_words): pylab.subplot(self.num_display_words // cols, cols, i + 1) if K.image_data_format() == 'channels_first': the_input = word_batch['the_input'][i, 0, :, :] else: the_input = word_batch['the_input'][i, :, :, 0] pylab.imshow(the_input.T, cmap='Greys_r') pylab.xlabel('Truth = \'%s\'\nDecoded = \'%s\'' % (word_batch['source_str'][i], res[i])) fig = pylab.gcf() fig.set_size_inches(10, 13) pylab.savefig(os.path.join(self.output_dir, 'e%02d.png' % (epoch))) pylab.close()
Example #16
Source File: image_ocr.py From pCVR with Apache License 2.0 | 6 votes |
def on_epoch_end(self, epoch, logs={}): self.model.save_weights(os.path.join(self.output_dir, 'weights%02d.h5' % (epoch))) self.show_edit_distance(256) word_batch = next(self.text_img_gen)[0] res = decode_batch(self.test_func, word_batch['the_input'][0:self.num_display_words]) if word_batch['the_input'][0].shape[0] < 256: cols = 2 else: cols = 1 for i in range(self.num_display_words): pylab.subplot(self.num_display_words // cols, cols, i + 1) if K.image_data_format() == 'channels_first': the_input = word_batch['the_input'][i, 0, :, :] else: the_input = word_batch['the_input'][i, :, :, 0] pylab.imshow(the_input.T, cmap='Greys_r') pylab.xlabel('Truth = \'%s\'\nDecoded = \'%s\'' % (word_batch['source_str'][i], res[i])) fig = pylab.gcf() fig.set_size_inches(10, 13) pylab.savefig(os.path.join(self.output_dir, 'e%02d.png' % (epoch))) pylab.close()
Example #17
Source File: image_ocr.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def on_epoch_end(self, epoch, logs={}): self.model.save_weights(os.path.join(self.output_dir, 'weights%02d.h5' % (epoch))) self.show_edit_distance(256) word_batch = next(self.text_img_gen)[0] res = decode_batch(self.test_func, word_batch['the_input'][0:self.num_display_words]) if word_batch['the_input'][0].shape[0] < 256: cols = 2 else: cols = 1 for i in range(self.num_display_words): pylab.subplot(self.num_display_words // cols, cols, i + 1) if K.image_data_format() == 'channels_first': the_input = word_batch['the_input'][i, 0, :, :] else: the_input = word_batch['the_input'][i, :, :, 0] pylab.imshow(the_input.T, cmap='Greys_r') pylab.xlabel('Truth = \'%s\'\nDecoded = \'%s\'' % (word_batch['source_str'][i], res[i])) fig = pylab.gcf() fig.set_size_inches(10, 13) pylab.savefig(os.path.join(self.output_dir, 'e%02d.png' % (epoch))) pylab.close()
Example #18
Source File: test.py From CalculiX-Examples with MIT License | 5 votes |
def solid_plot(): # reference values, see sref=0.0924102 wref=0.000170152 # List of the element types to process (text files) eltyps=["C3D8", "C3D8R", "C3D8I", "C3D20", "C3D20R", "C3D4", "C3D10"] pylab.figure(figsize=(10, 5.0), dpi=100) pylab.subplot(1,2,1) pylab.title("Stress") # pylab.hold(True) # deprecated for elty in eltyps: data = numpy.genfromtxt(elty+".txt") pylab.plot(data[:,1],data[:,2]/sref,"o-") pylab.xscale("log") pylab.xlabel('Number of nodes') pylab.ylabel('Max $\sigma / \sigma_{\mathrm{ref}}$') pylab.grid(True) pylab.subplot(1,2,2) pylab.title("Displacement") # pylab.hold(True) # deprecated for elty in eltyps: data = numpy.genfromtxt(elty+".txt") pylab.plot(data[:,1],data[:,3]/wref,"o-") pylab.xscale("log") pylab.xlabel('Number of nodes') pylab.ylabel('Max $u / u_{\mathrm{ref}}$') pylab.ylim([0,1.2]) pylab.grid(True) pylab.legend(eltyps,loc="lower right") pylab.tight_layout() pylab.savefig("solid.svg",format="svg") # pylab.show() # Move new files and folders to 'Refs'
Example #19
Source File: pncview.py From pseudonetcdf with GNU Lesser General Public License v3.0 | 5 votes |
def timeseries(ifile, varkey, options, before='', after=''): import pylab as pl outpath = getattr(options, 'outpath', '.') time = gettime(ifile) var = ifile.variables[varkey] dims = [(k, l) for l, k in zip(var[:].shape, var.dimensions) if l > 1] if len(dims) > 1: raise ValueError( 'Time series can have 1 non-unity dimensions; got %d - %s' % (len(dims), str(dims))) exec(before) ax = pl.gca() print(varkey, end='') if options.logscale: ax.set_yscale('log') ax.plot_date(time[:].squeeze(), var[:].squeeze()) ax.set_xlabel(time.units.strip()) ax.set_ylabel(getattr(var, 'standard_name', varkey).strip() + ' ' + var.units.strip()) fmt = 'png' figpath = os.path.join(outpath + '_ts_' + varkey + '.' + fmt) exec(after) pl.savefig(figpath) print('Saved fig', figpath) return figpath
Example #20
Source File: helper.py From KittiSeg with MIT License | 5 votes |
def saveBEVImageWithAxes(data, outputname, cmap = None, xlabel = 'x [m]', ylabel = 'z [m]', rangeX = [-10, 10], rangeXpx = None, numDeltaX = 5, rangeZ = [7, 62], rangeZpx = None, numDeltaZ = 5, fontSize = 16): ''' :param data: :param outputname: :param cmap: ''' aspect_ratio = float(data.shape[1])/data.shape[0] fig = pylab.figure() Scale = 8 # add +1 to get axis text fig.set_size_inches(Scale*aspect_ratio+1,Scale*1) ax = pylab.gca() #ax.set_axis_off() #fig.add_axes(ax) if cmap != None: pylab.set_cmap(cmap) #ax.imshow(data, interpolation='nearest', aspect = 'normal') ax.imshow(data, interpolation='nearest') if rangeXpx == None: rangeXpx = (0, data.shape[1]) if rangeZpx == None: rangeZpx = (0, data.shape[0]) modBev_plot(ax, rangeX, rangeXpx, numDeltaX, rangeZ, rangeZpx, numDeltaZ, fontSize, xlabel = xlabel, ylabel = ylabel) #plt.savefig(outputname, bbox_inches='tight', dpi = dpi) pylab.savefig(outputname, dpi = data.shape[0]/Scale) pylab.close() fig.clear()
Example #21
Source File: test_modcovar.py From spectrum with BSD 3-Clause "New" or "Revised" License | 5 votes |
def create_figure(): newpsd = test_modcovar() pylab.plot(pylab.linspace(-0.5, 0.5, 4096), 10 * pylab.log10(newpsd/max(newpsd))) pylab.axis([-0.5,0.5,-60,0]) pylab.savefig('psd_modcovar.png')
Example #22
Source File: test_burg.py From spectrum with BSD 3-Clause "New" or "Revised" License | 5 votes |
def create_figure(): psd = test_burg() pylab.plot(pylab.linspace(-0.5, 0.5, len(psd)), 10 * pylab.log10(psd/max(psd))) pylab.axis([-0.5,0.5,-60,0]) pylab.savefig('psd_burg.png')
Example #23
Source File: test_covar.py From spectrum with BSD 3-Clause "New" or "Revised" License | 5 votes |
def create_figure(): psd = test_pcovar() pylab.axis([-0.5,0.5,-60,0]) pylab.savefig('psd_covar.png')
Example #24
Source File: test_minvar.py From spectrum with BSD 3-Clause "New" or "Revised" License | 5 votes |
def create_figure(): res = test_minvar() psd = res[0] f = pylab.linspace(-0.5, 0.5, len(psd)) pylab.plot(f, 10 * pylab.log10(psd/max(psd)), label='minvar 15') pylab.savefig('psd_minvar.png')
Example #25
Source File: pncview.py From pseudonetcdf with GNU Lesser General Public License v3.0 | 5 votes |
def presslat(ifile, varkey, options, before='', after=''): import matplotlib.pyplot as plt from matplotlib.colors import Normalize, LogNorm outpath = getattr(options, 'outpath', '.') vert = cu.getpresbnds(ifile) lat, latunit = cu.getlatbnds(ifile) lat = np.append(lat.squeeze()[..., :2].mean( 1), lat.squeeze()[-1, 2:].mean(0)) var = ifile.variables[varkey] dims = [(k, l) for l, k in zip(var[:].shape, var.dimensions) if l > 1] if len(dims) > 2: raise ValueError( 'Press-lat can have 2 non-unity dimensions; got %d - %s' % (len(dims), str(dims))) if options.logscale: norm = LogNorm() else: norm = Normalize() exec(before) ax = plt.gca() print(varkey, end='') patches = ax.pcolor(lat, vert, var[:].squeeze(), norm=norm) # ax.set_xlabel(X.units.strip()) # ax.set_ylabel(Y.units.strip()) cbar = plt.colorbar(patches) vunit = getattr(var, 'units', 'unknown').strip() cbar.set_label(varkey + ' (' + vunit + ')') cbar.ax.text(.5, 1, '%.2g' % var[:].max( ), horizontalalignment='center', verticalalignment='bottom') cbar.ax.text(.5, 0, '%.2g' % var[:].min( ), horizontalalignment='center', verticalalignment='top') ax.set_ylim(vert.max(), vert.min()) ax.set_xlim(lat.min(), lat.max()) fmt = 'png' figpath = os.path.join(outpath + '_PRESSLAT_' + varkey + '.' + fmt) exec(after) plt.savefig(figpath) print('Saved fig', figpath) return figpath
Example #26
Source File: pncview.py From pseudonetcdf with GNU Lesser General Public License v3.0 | 5 votes |
def presslon(ifile, varkey, options, before='', after=''): import matplotlib.pyplot as plt from matplotlib.colors import Normalize, LogNorm outpath = getattr(options, 'outpath', '.') vert = cu.getpresbnds(ifile) lon, lonunit = cu.getlonbnds(ifile) lon = np.append(lon.squeeze()[..., [0, 3]].mean( 1), lon.squeeze()[-1, [1, 2]].mean(0)) var = ifile.variables[varkey] dims = [(k, l) for l, k in zip(var[:].shape, var.dimensions) if l > 1] if len(dims) > 2: raise ValueError( 'Press-lon plots can have 2 non-unity dimensions; got %d - %s' % (len(dims), str(dims))) if options.logscale: norm = LogNorm() else: norm = Normalize() exec(before) ax = plt.gca() print(varkey, end='') patches = ax.pcolor(lon, vert, var[:].squeeze(), norm=norm) # ax.set_xlabel(X.units.strip()) # ax.set_ylabel(Y.units.strip()) cbar = plt.colorbar(patches) vunit = getattr(var, 'units', 'unknown').strip() cbar.set_label(varkey + ' (' + vunit + ')') cbar.ax.text(.5, 1, '%.2g' % var[:].max( ), horizontalalignment='center', verticalalignment='bottom') cbar.ax.text(.5, 0, '%.2g' % var[:].min( ), horizontalalignment='center', verticalalignment='top') ax.set_ylim(vert.max(), vert.min()) ax.set_xlim(lon.min(), lon.max()) fmt = 'png' figpath = os.path.join(outpath + '_PRESLON_' + varkey + '.' + fmt) exec(after) plt.savefig(figpath) print('Saved fig', figpath) return figpath
Example #27
Source File: pncview.py From pseudonetcdf with GNU Lesser General Public License v3.0 | 5 votes |
def profile(ifile, varkey, options, before='', after=''): import matplotlib.pyplot as plt print(varkey, end='') outpath = getattr(options, 'outpath', '.') try: vert = cu.getpresmid(ifile) vunit = 'Pa' except Exception: vert = cu.getsigmamid(ifile) vunit = r'\sigma' var = ifile.variables[varkey] dims = list(var.dimensions) for knownvert in ['layer', 'LAY'] + ['layer%d' % i for i in range(72)]: if knownvert in dims: vidx = dims.index(knownvert) break else: raise KeyError("No known vertical coordinate; got %s" % str(dims)) vert = vert[:var[:].shape[vidx]] units = var.units.strip() vals = np.rollaxis(var[:], vidx, start=0).view( np.ma.MaskedArray).reshape(vert.size, -1) ax = plt.gca() minmaxmean(ax, vals, vert) ax.set_xlabel(varkey + ' (' + units + ')') ax.set_ylabel(vunit) ax.set_ylim(vert.max(), vert.min()) if options.logscale: ax.set_xscale('log') fmt = 'png' figpath = os.path.join(outpath + '_profile_' + varkey + '.' + fmt) exec(after) plt.savefig(figpath) print('Saved fig', figpath) return figpath
Example #28
Source File: piecharts.py From binaryanalysis with Apache License 2.0 | 5 votes |
def generateImages(picklefile, pickledir, filehash, imagedir, pietype): leaf_file = open(os.path.join(pickledir, picklefile), 'rb') (piedata, pielabels) = cPickle.load(leaf_file) leaf_file.close() pylab.figure(1, figsize=(6.5,6.5)) ax = pylab.axes([0.2, 0.15, 0.6, 0.6]) pylab.pie(piedata, labels=pielabels) pylab.savefig(os.path.join(imagedir, '%s-%s.png' % (filehash, pietype))) pylab.gcf().clear() os.unlink(os.path.join(pickledir, picklefile))
Example #29
Source File: helper.py From KittiSeg with MIT License | 5 votes |
def saveBEVImageWithAxes(data, outputname, cmap = None, xlabel = 'x [m]', ylabel = 'z [m]', rangeX = [-10, 10], rangeXpx = None, numDeltaX = 5, rangeZ = [7, 62], rangeZpx = None, numDeltaZ = 5, fontSize = 16): ''' :param data: :param outputname: :param cmap: ''' aspect_ratio = float(data.shape[1])/data.shape[0] fig = pylab.figure() Scale = 8 # add +1 to get axis text fig.set_size_inches(Scale*aspect_ratio+1,Scale*1) ax = pylab.gca() #ax.set_axis_off() #fig.add_axes(ax) if cmap != None: pylab.set_cmap(cmap) #ax.imshow(data, interpolation='nearest', aspect = 'normal') ax.imshow(data, interpolation='nearest') if rangeXpx == None: rangeXpx = (0, data.shape[1]) if rangeZpx == None: rangeZpx = (0, data.shape[0]) modBev_plot(ax, rangeX, rangeXpx, numDeltaX, rangeZ, rangeZpx, numDeltaZ, fontSize, xlabel = xlabel, ylabel = ylabel) #plt.savefig(outputname, bbox_inches='tight', dpi = dpi) pylab.savefig(outputname, dpi = data.shape[0]/Scale) pylab.close() fig.clear()
Example #30
Source File: pncview.py From pseudonetcdf with GNU Lesser General Public License v3.0 | 5 votes |
def pressx(ifile, varkey, options, before='', after=''): import matplotlib.pyplot as plt from matplotlib.colors import Normalize, LogNorm outpath = getattr(options, 'outpath', '.') vert = cu.getpresbnds(ifile) var = ifile.variables[varkey] dims = [(k, l) for l, k in zip(var[:].shape, var.dimensions) if l > 1] if len(dims) > 2: raise ValueError( 'Press-x can have 2 non-unity dimensions; got %d - %s' % (len(dims), str(dims))) if options.logscale: norm = LogNorm() else: norm = Normalize() exec(before) ax = plt.gca() print(varkey, end='') vals = var[:].squeeze() x = np.arange(vals.shape[1]) patches = ax.pcolor(x, vert, vals, norm=norm) # ax.set_xlabel(X.units.strip()) # ax.set_ylabel(Y.units.strip()) plt.colorbar(patches) ax.set_ylim(vert.max(), vert.min()) ax.set_xlim(x.min(), x.max()) fmt = 'png' figpath = os.path.join(outpath + '_PRESX_' + varkey + '.' + fmt) exec(after) plt.savefig(figpath) print('Saved fig', figpath) return figpath