Python pylab.axvline() Examples

The following are 7 code examples of pylab.axvline(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module pylab , or try the search function .
Example #1
Source File: segmenter.py    From msaf with MIT License 6 votes vote down vote up
def pick_peaks(nc, L=16):
    """Obtain peaks from a novelty curve using an adaptive threshold."""
    offset = nc.mean() / 20.

    nc = filters.gaussian_filter1d(nc, sigma=4)  # Smooth out nc

    th = filters.median_filter(nc, size=L) + offset
    #th = filters.gaussian_filter(nc, sigma=L/2., mode="nearest") + offset

    peaks = []
    for i in range(1, nc.shape[0] - 1):
        # is it a peak?
        if nc[i - 1] < nc[i] and nc[i] > nc[i + 1]:
            # is it above the threshold?
            if nc[i] > th[i]:
                peaks.append(i)
    #plt.plot(nc)
    #plt.plot(th)
    #for peak in peaks:
        #plt.axvline(peak)
    #plt.show()

    return peaks 
Example #2
Source File: View.py    From Deep-Spying with Apache License 2.0 6 votes vote down vote up
def plot_signal_and_label(self, title, timestamp, signal, label_timestamp, label):
        if not self.to_save and not self.to_show:
            return

        pylab.figure()

        pylab.plot(timestamp, signal, color='m', label='signal')

        for i in range(0, len(label_timestamp)):
            pylab.axvline(label_timestamp[i], color="k", label="{}: key {}".format(i, label[i]), ls='dashed')

        pylab.legend()

        pylab.title(title)
        pylab.xlabel('Time')
        pylab.ylabel('Amplitude') 
Example #3
Source File: View.py    From Deep-Spying with Apache License 2.0 6 votes vote down vote up
def plot_sensor_data_and_segment(self, title, timestamp, x, y, z, segment, label):
        if not self.to_save and not self.to_show:
            return

        self.big_figure()

        pylab.plot(timestamp, x, color='r', label='x')
        pylab.plot(timestamp, y, color='g', label='y')
        pylab.plot(timestamp, z, color='b', label='z')

        for i in range(0, len(segment)):
            pylab.axvline(segment[i][0], color="c", ls='dashed')
            pylab.axvline(segment[i][1], color="k", label="{}: key {}".format(i, label[i]), ls='dashed')
            pylab.axvline(segment[i][2], color="m", ls='dashed')

        pylab.legend()

        pylab.title(title)
        pylab.xlabel('Time')
        pylab.ylabel('Amplitude') 
Example #4
Source File: bandstructure.py    From pyiron with BSD 3-Clause "New" or "Revised" License 5 votes vote down vote up
def plot(self):
        import pylab as plt

        q_ticks_int = [self.q_dist[i] for i in self.q_ticks]
        q_ticks_label = self.q_labels
        for i, q in enumerate(q_ticks_label):
            if q in self.translate_to_pylab:
                q_ticks_label[i] = self.translate_to_pylab[q]
        plt.plot(self.q_dist, self.ew_list)
        plt.xticks(q_ticks_int, q_ticks_label)
        for x in q_ticks_int:
            plt.axvline(x, color="black")
        return plt 
Example #5
Source File: analyser.py    From spotpy with MIT License 5 votes vote down vote up
def plot_objectivefunction(results,evaluation,limit=None,sort=True, fig_name = 'objective_function.png'):
    """Example Plot as seen in the SPOTPY Documentation"""
    import matplotlib.pyplot as plt
    likes=calc_like(results,evaluation,spotpy.objectivefunctions.rmse)
    data=likes
    #Calc confidence Interval
    mean = np.average(data)
    # evaluate sample variance by setting delta degrees of freedom (ddof) to
    # 1. The degree used in calculations is N - ddof
    stddev = np.std(data, ddof=1)
    from scipy.stats import t
    # Get the endpoints of the range that contains 95% of the distribution
    t_bounds = t.interval(0.999, len(data) - 1)
    # sum mean to the confidence interval
    ci = [mean + critval * stddev / np.sqrt(len(data)) for critval in t_bounds]
    value="Mean: %f" % mean
    print(value)
    value="Confidence Interval 95%%: %f, %f" % (ci[0], ci[1])
    print(value)
    threshold=ci[1]
    happend=None
    bestlike=[data[0]]
    for like in data:
        if like<bestlike[-1]:
            bestlike.append(like)
        if bestlike[-1]<threshold and not happend:
            thresholdpos=len(bestlike)
            happend=True
        else:
            bestlike.append(bestlike[-1])
    if limit:
        plt.plot(bestlike,'k-')#[0:limit])
        plt.axvline(x=thresholdpos,color='r')
        plt.plot(likes,'b-')
        #plt.ylim(ymin=-1,ymax=1.39)
    else:
        plt.plot(bestlike)
    plt.savefig(fig_name) 
Example #6
Source File: View.py    From Deep-Spying with Apache License 2.0 5 votes vote down vote up
def plot_sensor_data_and_label(self, title, timestamp, x, y, z, label_timestamp, label=None):
        if not self.to_save and not self.to_show:
            return

        self.big_figure()

        pylab.plot(timestamp, x, color='r', label='x')
        pylab.plot(timestamp, y, color='g', label='y')
        pylab.plot(timestamp, z, color='b', label='z')

        for i in range(0, len(label_timestamp)):
            if label is not None:
                if i != 0:
                    pylab.axvline(label_timestamp[i], color="k", ls='dashed')
                else:
                    pylab.axvline(label_timestamp[i], color="k", label="keystroke", ls='dashed')
            else:
                pylab.axvline(label_timestamp[i], color="k", ls='dashed')

        pylab.legend()

        pylab.title(title)
        pylab.xlabel('Time')
        pylab.ylabel('Amplitude')
        if label:
            pylab.xticks(label_timestamp, label) 
Example #7
Source File: segmenter.py    From msaf with MIT License 4 votes vote down vote up
def processFlat(self):
        """Main process.
        Returns
        -------
        est_idxs : np.array(N)
            Estimated indeces the segment boundaries in frames.
        est_labels : np.array(N-1)
            Estimated labels for the segments.
        """
        # Preprocess to obtain features
        F = self._preprocess()

        # Normalize
        F = msaf.utils.normalize(F, norm_type=self.config["bound_norm_feats"])

        # Make sure that the M_gaussian is even
        if self.config["M_gaussian"] % 2 == 1:
            self.config["M_gaussian"] += 1

        # Median filter
        F = median_filter(F, M=self.config["m_median"])
        #plt.imshow(F.T, interpolation="nearest", aspect="auto"); plt.show()

        # Self similarity matrix
        S = compute_ssm(F)

        # Compute gaussian kernel
        G = compute_gaussian_krnl(self.config["M_gaussian"])
        #plt.imshow(S, interpolation="nearest", aspect="auto"); plt.show()

        # Compute the novelty curve
        nc = compute_nc(S, G)

        # Find peaks in the novelty curve
        est_idxs = pick_peaks(nc, L=self.config["L_peaks"])

        # Add first and last frames
        est_idxs = np.concatenate(([0], est_idxs, [F.shape[0] - 1]))

        # Empty labels
        est_labels = np.ones(len(est_idxs) - 1) * -1

        # Post process estimations
        est_idxs, est_labels = self._postprocess(est_idxs, est_labels)

        return est_idxs, est_labels
        # plt.figure(1)
        # plt.plot(nc);
        # [plt.axvline(p, color="m") for p in est_bounds]
        # [plt.axvline(b, color="g") for b in ann_bounds]
        # plt.figure(2)
        # plt.imshow(S, interpolation="nearest", aspect="auto")
        # [plt.axvline(b, color="g") for b in ann_bounds]
        # plt.show()