Python numpy.float32() Examples
The following are 30
code examples of numpy.float32().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example #1
Source File: optimization.py From Att-ChemdNER with Apache License 2.0 | 7 votes |
def sgd(self, cost, params,constraints={}, lr=0.01): #{{{ """ Stochatic gradient descent. """ updates = [] lr = theano.shared(np.float32(lr).astype(floatX)) gradients = self.get_gradients(cost, params) for p, g in zip(params, gradients): v=-lr*g; new_p=p+v; # apply constraints if p in constraints: c=constraints[p]; new_p=c(new_p); updates.append((p, new_p)) return updates #}}}
Example #2
Source File: ggtnn_train.py From gated-graph-transformer-network with MIT License | 6 votes |
def convert_answer(answer, num_words, format_spec, maxlen): """ Convert an answer into an appropriate answer matrix given a ModelOutputFormat. num_words should be after processing with get_effective_answer_words, so that the last word is the "stop" word """ assert format_spec in model.ModelOutputFormat if format_spec == model.ModelOutputFormat.subset: ans_mat = np.zeros((1,num_words), np.float32) for word in answer: ans_mat[0, word] = 1.0 elif format_spec == model.ModelOutputFormat.category: ans_mat = np.zeros((1,num_words), np.float32) ans_mat[0,answer[0]] = 1.0 elif format_spec == model.ModelOutputFormat.sequence: ans_mat = np.zeros((maxlen+1,num_words), np.float32) for i,word in enumerate(answer+[num_words-1]*(maxlen+1-len(answer))): ans_mat[i, word] = 1.0 return ans_mat
Example #3
Source File: data_loader.py From aospy with Apache License 2.0 | 6 votes |
def _maybe_cast_to_float64(da): """Cast DataArrays to np.float64 if they are of type np.float32. Parameters ---------- da : xr.DataArray Input DataArray Returns ------- DataArray """ if da.dtype == np.float32: logging.warning('Datapoints were stored using the np.float32 datatype.' 'For accurate reduction operations using bottleneck, ' 'datapoints are being cast to the np.float64 datatype.' ' For more information see: https://github.com/pydata/' 'xarray/issues/1346') return da.astype(np.float64) else: return da
Example #4
Source File: dataset_tool.py From disentangling_conditional_gans with MIT License | 6 votes |
def add_image(self, img): if self.print_progress and self.cur_images % self.progress_interval == 0: print('%d / %d\r' % (self.cur_images, self.expected_images), end='', flush=True) sys.stdout.flush() if self.shape is None: self.shape = img.shape self.resolution_log2 = int(np.log2(self.shape[1])) assert self.shape[0] in [1, 3] assert self.shape[1] == self.shape[2] assert self.shape[1] == 2**self.resolution_log2 tfr_opt = tf.python_io.TFRecordOptions(tf.python_io.TFRecordCompressionType.NONE) for lod in range(self.resolution_log2 - 1): tfr_file = self.tfr_prefix + '-r%02d.tfrecords' % (self.resolution_log2 - lod) self.tfr_writers.append(tf.python_io.TFRecordWriter(tfr_file, tfr_opt)) assert img.shape == self.shape for lod, tfr_writer in enumerate(self.tfr_writers): if lod: img = img.astype(np.float32) img = (img[:, 0::2, 0::2] + img[:, 0::2, 1::2] + img[:, 1::2, 0::2] + img[:, 1::2, 1::2]) * 0.25 quant = np.rint(img).clip(0, 255).astype(np.uint8) ex = tf.train.Example(features=tf.train.Features(feature={ 'shape': tf.train.Feature(int64_list=tf.train.Int64List(value=quant.shape)), 'data': tf.train.Feature(bytes_list=tf.train.BytesList(value=[quant.tostring()]))})) tfr_writer.write(ex.SerializeToString()) self.cur_images += 1
Example #5
Source File: dataset_tool.py From disentangling_conditional_gans with MIT License | 6 votes |
def create_mnist(tfrecord_dir, mnist_dir): print('Loading MNIST from "%s"' % mnist_dir) import gzip with gzip.open(os.path.join(mnist_dir, 'train-images-idx3-ubyte.gz'), 'rb') as file: images = np.frombuffer(file.read(), np.uint8, offset=16) with gzip.open(os.path.join(mnist_dir, 'train-labels-idx1-ubyte.gz'), 'rb') as file: labels = np.frombuffer(file.read(), np.uint8, offset=8) images = images.reshape(-1, 1, 28, 28) images = np.pad(images, [(0,0), (0,0), (2,2), (2,2)], 'constant', constant_values=0) assert images.shape == (60000, 1, 32, 32) and images.dtype == np.uint8 assert labels.shape == (60000,) and labels.dtype == np.uint8 assert np.min(images) == 0 and np.max(images) == 255 assert np.min(labels) == 0 and np.max(labels) == 9 onehot = np.zeros((labels.size, np.max(labels) + 1), dtype=np.float32) onehot[np.arange(labels.size), labels] = 1.0 with TFRecordExporter(tfrecord_dir, images.shape[0]) as tfr: order = tfr.choose_shuffled_order() for idx in range(order.size): tfr.add_image(images[order[idx]]) tfr.add_labels(onehot[order]) #----------------------------------------------------------------------------
Example #6
Source File: common.py From cat-bbs with MIT License | 6 votes |
def draw_heatmap(img, heatmap, alpha=0.5): """Draw a heatmap overlay over an image.""" assert len(heatmap.shape) == 2 or \ (len(heatmap.shape) == 3 and heatmap.shape[2] == 1) assert img.dtype in [np.uint8, np.int32, np.int64] assert heatmap.dtype in [np.float32, np.float64] if img.shape[0:2] != heatmap.shape[0:2]: heatmap_rs = np.clip(heatmap * 255, 0, 255).astype(np.uint8) heatmap_rs = ia.imresize_single_image( heatmap_rs[..., np.newaxis], img.shape[0:2], interpolation="nearest" ) heatmap = np.squeeze(heatmap_rs) / 255.0 cmap = plt.get_cmap('jet') heatmap_cmapped = cmap(heatmap) heatmap_cmapped = np.delete(heatmap_cmapped, 3, 2) heatmap_cmapped = heatmap_cmapped * 255 mix = (1-alpha) * img + alpha * heatmap_cmapped mix = np.clip(mix, 0, 255).astype(np.uint8) return mix
Example #7
Source File: bbs.py From cat-bbs with MIT License | 6 votes |
def draw_on_image(self, img, color=[0, 255, 0], alpha=1.0, copy=True): if copy: img = np.copy(img) orig_dtype = img.dtype if alpha != 1.0 and img.dtype != np.float32: img = img.astype(np.float32, copy=False) for rectimg in self: if rectimg is not None: rectimg.draw_on_image(img, color=color, alpha=alpha, copy=False) if orig_dtype != img.dtype: img = img.astype(orig_dtype, copy=False) return img
Example #8
Source File: bbs.py From cat-bbs with MIT License | 6 votes |
def draw_on_image(self, img, color=[0, 255, 0], alpha=1.0, copy=True, from_img=None): if copy: img = np.copy(img) orig_dtype = img.dtype if alpha != 1.0 and img.dtype != np.float32: img = img.astype(np.float32, copy=False) for rect in self: if from_img is not None: rect.resize(from_img, img).draw_on_image(img, color=color, alpha=alpha, copy=False) else: rect.draw_on_image(img, color=color, alpha=alpha, copy=False) if orig_dtype != img.dtype: img = img.astype(orig_dtype, copy=False) return img
Example #9
Source File: dataset_tool.py From disentangling_conditional_gans with MIT License | 6 votes |
def create_cifar100(tfrecord_dir, cifar100_dir): print('Loading CIFAR-100 from "%s"' % cifar100_dir) import pickle with open(os.path.join(cifar100_dir, 'train'), 'rb') as file: data = pickle.load(file, encoding='latin1') images = data['data'].reshape(-1, 3, 32, 32) labels = np.array(data['fine_labels']) assert images.shape == (50000, 3, 32, 32) and images.dtype == np.uint8 assert labels.shape == (50000,) and labels.dtype == np.int32 assert np.min(images) == 0 and np.max(images) == 255 assert np.min(labels) == 0 and np.max(labels) == 99 onehot = np.zeros((labels.size, np.max(labels) + 1), dtype=np.float32) onehot[np.arange(labels.size), labels] = 1.0 with TFRecordExporter(tfrecord_dir, images.shape[0]) as tfr: order = tfr.choose_shuffled_order() for idx in range(order.size): tfr.add_image(images[order[idx]]) tfr.add_labels(onehot[order]) #----------------------------------------------------------------------------
Example #10
Source File: util_scripts.py From disentangling_conditional_gans with MIT License | 6 votes |
def generate_fake_images(run_id, snapshot=None, grid_size=[1,1], num_pngs=1, image_shrink=1, png_prefix=None, random_seed=1000, minibatch_size=8): network_pkl = misc.locate_network_pkl(run_id, snapshot) if png_prefix is None: png_prefix = misc.get_id_string_for_network_pkl(network_pkl) + '-' random_state = np.random.RandomState(random_seed) print('Loading network from "%s"...' % network_pkl) G, D, Gs = misc.load_network_pkl(run_id, snapshot) result_subdir = misc.create_result_subdir(config.result_dir, config.desc) for png_idx in range(num_pngs): print('Generating png %d / %d...' % (png_idx, num_pngs)) latents = misc.random_latents(np.prod(grid_size), Gs, random_state=random_state) labels = np.zeros([latents.shape[0], 0], np.float32) images = Gs.run(latents, labels, minibatch_size=minibatch_size, num_gpus=config.num_gpus, out_mul=127.5, out_add=127.5, out_shrink=image_shrink, out_dtype=np.uint8) misc.save_image_grid(images, os.path.join(result_subdir, '%s%06d.png' % (png_prefix, png_idx)), [0,255], grid_size) open(os.path.join(result_subdir, '_done.txt'), 'wt').close() #---------------------------------------------------------------------------- # Generate MP4 video of random interpolations using a previously trained network. # To run, uncomment the appropriate line in config.py and launch train.py.
Example #11
Source File: networks.py From disentangling_conditional_gans with MIT License | 6 votes |
def minibatch_stddev_layer(x, group_size=4): with tf.variable_scope('MinibatchStddev'): group_size = tf.minimum(group_size, tf.shape(x)[0]) # Minibatch must be divisible by (or smaller than) group_size. s = x.shape # [NCHW] Input shape. y = tf.reshape(x, [group_size, -1, s[1], s[2], s[3]]) # [GMCHW] Split minibatch into M groups of size G. y = tf.cast(y, tf.float32) # [GMCHW] Cast to FP32. y -= tf.reduce_mean(y, axis=0, keep_dims=True) # [GMCHW] Subtract mean over group. y = tf.reduce_mean(tf.square(y), axis=0) # [MCHW] Calc variance over group. y = tf.sqrt(y + 1e-8) # [MCHW] Calc stddev over group. y = tf.reduce_mean(y, axis=[1,2,3], keep_dims=True) # [M111] Take average over fmaps and pixels. y = tf.cast(y, x.dtype) # [M111] Cast back to original data type. y = tf.tile(y, [group_size, 1, s[2], s[3]]) # [N1HW] Replicate over group and pixels. return tf.concat([x, y], axis=1) # [NCHW] Append as new fmap. #---------------------------------------------------------------------------- # Generator network used in the paper.
Example #12
Source File: utils.py From Att-ChemdNER with Apache License 2.0 | 6 votes |
def set_values(name, param, pretrained): #{{{ """ Initialize a network parameter with pretrained values. We check that sizes are compatible. """ param_value = param.get_value() if pretrained.size != param_value.size: raise Exception( "Size mismatch for parameter %s. Expected %i, found %i." % (name, param_value.size, pretrained.size) ) param.set_value(np.reshape( pretrained, param_value.shape ).astype(np.float32)) #}}}
Example #13
Source File: optimization.py From Att-ChemdNER with Apache License 2.0 | 6 votes |
def sgdmomentum(self, cost, params,constraints={}, lr=0.01,consider_constant=None, momentum=0.): """ Stochatic gradient descent with momentum. Momentum has to be in [0, 1) """ # Check that the momentum is a correct value assert 0 <= momentum < 1 lr = theano.shared(np.float32(lr).astype(floatX)) momentum = theano.shared(np.float32(momentum).astype(floatX)) gradients = self.get_gradients(cost, params) velocities = [theano.shared(np.zeros_like(param.get_value(borrow=True)).astype(floatX)) for param in params] updates = [] for param, gradient, velocity in zip(params, gradients, velocities): new_velocity = momentum * velocity - lr * gradient updates.append((velocity, new_velocity)) new_p=param+new_velocity; # apply constraints if param in constraints: c=constraints[param]; new_p=c(new_p); updates.append((param, new_p)) return updates
Example #14
Source File: optimization.py From Att-ChemdNER with Apache License 2.0 | 6 votes |
def adagrad(self, cost, params, lr=1.0, epsilon=1e-6,consider_constant=None): """ Adagrad. Based on http://www.ark.cs.cmu.edu/cdyer/adagrad.pdf """ lr = theano.shared(np.float32(lr).astype(floatX)) epsilon = theano.shared(np.float32(epsilon).astype(floatX)) gradients = self.get_gradients(cost, params,consider_constant) gsums = [theano.shared(np.zeros_like(param.get_value(borrow=True)).astype(floatX)) for param in params] updates = [] for param, gradient, gsum in zip(params, gradients, gsums): new_gsum = gsum + gradient ** 2. updates.append((gsum, new_gsum)) updates.append((param, param - lr * gradient / (T.sqrt(gsum + epsilon)))) return updates
Example #15
Source File: optimization.py From Att-ChemdNER with Apache License 2.0 | 6 votes |
def adadelta(self, cost, params, rho=0.95, epsilon=1e-6,consider_constant=None): """ Adadelta. Based on: http://www.matthewzeiler.com/pubs/googleTR2012/googleTR2012.pdf """ rho = theano.shared(np.float32(rho).astype(floatX)) epsilon = theano.shared(np.float32(epsilon).astype(floatX)) gradients = self.get_gradients(cost, params,consider_constant) accu_gradients = [theano.shared(np.zeros_like(param.get_value(borrow=True)).astype(floatX)) for param in params] accu_deltas = [theano.shared(np.zeros_like(param.get_value(borrow=True)).astype(floatX)) for param in params] updates = [] for param, gradient, accu_gradient, accu_delta in zip(params, gradients, accu_gradients, accu_deltas): new_accu_gradient = rho * accu_gradient + (1. - rho) * gradient ** 2. delta_x = - T.sqrt((accu_delta + epsilon) / (new_accu_gradient + epsilon)) * gradient new_accu_delta = rho * accu_delta + (1. - rho) * delta_x ** 2. updates.append((accu_gradient, new_accu_gradient)) updates.append((accu_delta, new_accu_delta)) updates.append((param, param + delta_x)) return updates
Example #16
Source File: optimization.py From Att-ChemdNER with Apache License 2.0 | 6 votes |
def rmsprop(self, cost, params, lr=0.001, rho=0.9, eps=1e-6,consider_constant=None): """ RMSProp. """ lr = theano.shared(np.float32(lr).astype(floatX)) gradients = self.get_gradients(cost, params,consider_constant) accumulators = [theano.shared(np.zeros_like(p.get_value()).astype(np.float32)) for p in params] updates = [] for param, gradient, accumulator in zip(params, gradients, accumulators): new_accumulator = rho * accumulator + (1 - rho) * gradient ** 2 updates.append((accumulator, new_accumulator)) new_param = param - lr * gradient / T.sqrt(new_accumulator + eps) updates.append((param, new_param)) return updates
Example #17
Source File: theano_backend.py From Att-ChemdNER with Apache License 2.0 | 6 votes |
def in_top_k(predictions, targets, k): '''Returns whether the `targets` are in the top `k` `predictions` # Arguments predictions: A tensor of shape batch_size x classess and type float32. targets: A tensor of shape batch_size and type int32 or int64. k: An int, number of top elements to consider. # Returns A tensor of shape batch_size and type int. output_i is 1 if targets_i is within top-k values of predictions_i ''' predictions_top_k = T.argsort(predictions)[:, -k:] result, _ = theano.map(lambda prediction, target: any(equal(prediction, target)), sequences=[predictions_top_k, targets]) return result # CONVOLUTIONS
Example #18
Source File: theano_backend.py From Att-ChemdNER with Apache License 2.0 | 6 votes |
def ctc_path_probs(predict, Y, alpha=1e-4): smoothed_predict = (1 - alpha) * predict[:, Y] + alpha * np.float32(1.) / Y.shape[0] L = T.log(smoothed_predict) zeros = T.zeros_like(L[0]) log_first = zeros f_skip_idxs = ctc_create_skip_idxs(Y) b_skip_idxs = ctc_create_skip_idxs(Y[::-1]) # there should be a shortcut to calculating this def step(log_f_curr, log_b_curr, f_active, log_f_prev, b_active, log_b_prev): f_active_next, log_f_next = ctc_update_log_p(f_skip_idxs, zeros, f_active, log_f_curr, log_f_prev) b_active_next, log_b_next = ctc_update_log_p(b_skip_idxs, zeros, b_active, log_b_curr, log_b_prev) return f_active_next, log_f_next, b_active_next, log_b_next [f_active, log_f_probs, b_active, log_b_probs], _ = theano.scan( step, sequences=[L, L[::-1, ::-1]], outputs_info=[np.int32(1), log_first, np.int32(1), log_first]) idxs = T.arange(L.shape[1]).dimshuffle('x', 0) mask = (idxs < f_active.dimshuffle(0, 'x')) & (idxs < b_active.dimshuffle(0, 'x'))[::-1, ::-1] log_probs = log_f_probs + log_b_probs[::-1, ::-1] - L return log_probs, mask
Example #19
Source File: tfutil.py From disentangling_conditional_gans with MIT License | 6 votes |
def _create_autosummary_var(name, value_expr): assert not _autosummary_finalized v = tf.cast(value_expr, tf.float32) if v.shape.ndims is 0: v = [v, np.float32(1.0)] elif v.shape.ndims is 1: v = [tf.reduce_sum(v), tf.cast(tf.shape(v)[0], tf.float32)] else: v = [tf.reduce_sum(v), tf.reduce_prod(tf.cast(tf.shape(v), tf.float32))] v = tf.cond(tf.is_finite(v[0]), lambda: tf.stack(v), lambda: tf.zeros(2)) with tf.control_dependencies(None): var = tf.Variable(tf.zeros(2)) # [numerator, denominator] update_op = tf.cond(tf.is_variable_initialized(var), lambda: tf.assign_add(var, v), lambda: tf.assign(var, v)) if name in _autosummary_vars: _autosummary_vars[name].append(var) else: _autosummary_vars[name] = [var] return update_op #---------------------------------------------------------------------------- # Call filewriter.add_summary() with all summaries in the default graph, # automatically finalizing and merging them on the first call.
Example #20
Source File: tfutil.py From disentangling_conditional_gans with MIT License | 6 votes |
def autosummary(name, value): id = name.replace('/', '_') if is_tf_expression(value): with tf.name_scope('summary_' + id), tf.device(value.device): update_op = _create_autosummary_var(name, value) with tf.control_dependencies([update_op]): return tf.identity(value) else: # python scalar or numpy array if name not in _autosummary_immediate: with absolute_name_scope('Autosummary/' + id), tf.device(None), tf.control_dependencies(None): update_value = tf.placeholder(tf.float32) update_op = _create_autosummary_var(name, update_value) _autosummary_immediate[name] = update_op, update_value update_op, update_value = _autosummary_immediate[name] run(update_op, {update_value: np.float32(value)}) return value # Create the necessary ops to include autosummaries in TensorBoard report. # Note: This should be done only once per graph.
Example #21
Source File: test.py From Collaborative-Learning-for-Weakly-Supervised-Object-Detection with MIT License | 6 votes |
def _get_rois_blob(im_rois, im_scale_factors): """Converts RoIs into network inputs. Arguments: im_rois (ndarray): R x 4 matrix of RoIs in original image coordinates im_scale_factors (list): scale factors as returned by _get_image_blob Returns: blob (ndarray): R x 5 matrix of RoIs in the image pyramid """ rois_blob_real = [] for i in range(len(im_scale_factors)): rois, levels = _project_im_rois(im_rois, np.array([im_scale_factors[i]])) rois_blob = np.hstack((levels, rois)) rois_blob_real.append(rois_blob.astype(np.float32, copy=False)) return rois_blob_real
Example #22
Source File: test_train.py From Collaborative-Learning-for-Weakly-Supervised-Object-Detection with MIT License | 6 votes |
def _get_rois_blob(im_rois, im_scale_factors): """Converts RoIs into network inputs. Arguments: im_rois (ndarray): R x 4 matrix of RoIs in original image coordinates im_scale_factors (list): scale factors as returned by _get_image_blob Returns: blob (ndarray): R x 5 matrix of RoIs in the image pyramid """ rois_blob_real = [] for i in range(len(im_scale_factors)): rois, levels = _project_im_rois(im_rois, np.array([im_scale_factors[i]])) rois_blob = np.hstack((levels, rois)) rois_blob_real.append(rois_blob.astype(np.float32, copy=False)) return rois_blob_real
Example #23
Source File: _io_kernel.py From kaldi-python-io with Apache License 2.0 | 6 votes |
def read_float_vec(fd, direct_access=False): """ Read float vector(for class Vector in kaldi setup) see matrix/kaldi-vector.cc """ if direct_access: expect_binary(fd) vec_type = read_token(fd) print_info(f'\tType of the common vector: {vec_type}') if vec_type not in ["FV", "DV"]: raise RuntimeError(f"Unknown matrix type in kaldi: {vec_type}") float_size = 4 if vec_type == 'FV' else 8 float_type = np.float32 if vec_type == 'FV' else np.float64 dim = read_int32(fd) print_info(f'\tDim of the common vector: {dim}') vec_data = fd.read(float_size * dim) return np.fromstring(vec_data, dtype=float_type)
Example #24
Source File: snippets.py From Collaborative-Learning-for-Weakly-Supervised-Object-Detection with MIT License | 6 votes |
def generate_anchors_pre(height, width, feat_stride, anchor_scales=(8,16,32), anchor_ratios=(0.5,1,2)): """ A wrapper function to generate anchors given different scales Also return the number of anchors in variable 'length' """ anchors = generate_anchors(ratios=np.array(anchor_ratios), scales=np.array(anchor_scales)) A = anchors.shape[0] shift_x = np.arange(0, width) * feat_stride shift_y = np.arange(0, height) * feat_stride shift_x, shift_y = np.meshgrid(shift_x, shift_y) shifts = np.vstack((shift_x.ravel(), shift_y.ravel(), shift_x.ravel(), shift_y.ravel())).transpose() K = shifts.shape[0] # width changes faster, so here it is H, W, C anchors = anchors.reshape((1, A, 4)) + shifts.reshape((1, K, 4)).transpose((1, 0, 2)) anchors = anchors.reshape((K * A, 4)).astype(np.float32, copy=False) length = np.int32(anchors.shape[0]) return anchors, length
Example #25
Source File: _io_kernel.py From kaldi-python-io with Apache License 2.0 | 6 votes |
def read_common_mat(fd): """ Read common matrix(for class Matrix in kaldi setup) see matrix/kaldi-matrix.cc:: void Matrix<Real>::Read(std::istream & is, bool binary, bool add) Return a numpy ndarray object """ mat_type = read_token(fd) print_info(f'\tType of the common matrix: {mat_type}') if mat_type not in ["FM", "DM"]: raise RuntimeError(f"Unknown matrix type in kaldi: {mat_type}") float_size = 4 if mat_type == 'FM' else 8 float_type = np.float32 if mat_type == 'FM' else np.float64 num_rows = read_int32(fd) num_cols = read_int32(fd) print_info(f'\tSize of the common matrix: {num_rows} x {num_cols}') mat_data = fd.read(float_size * num_cols * num_rows) mat = np.fromstring(mat_data, dtype=float_type) return mat.reshape(num_rows, num_cols)
Example #26
Source File: baseop.py From Traffic_sign_detection_YOLO with MIT License | 6 votes |
def wrap_variable(self, var): """wrap layer.w into variables""" val = self.lay.w.get(var, None) if val is None: shape = self.lay.wshape[var] args = [0., 1e-2, shape] if 'moving_mean' in var: val = np.zeros(shape) elif 'moving_variance' in var: val = np.ones(shape) else: val = np.random.normal(*args) self.lay.w[var] = val.astype(np.float32) self.act = 'Init ' if not self.var: return val = self.lay.w[var] self.lay.w[var] = tf.constant_initializer(val) if var in self._SLIM: return with tf.variable_scope(self.scope): self.lay.w[var] = tf.get_variable(var, shape = self.lay.wshape[var], dtype = tf.float32, initializer = self.lay.w[var])
Example #27
Source File: moving_mnist.py From DDPAE-video-prediction with MIT License | 6 votes |
def generate_moving_mnist(self, num_digits=2): ''' Get random trajectories for the digits and generate a video. ''' data = np.zeros((self.n_frames_total, self.image_size_, self.image_size_), dtype=np.float32) for n in range(num_digits): # Trajectory start_y, start_x = self.get_random_trajectory(self.n_frames_total) ind = random.randint(0, self.mnist.shape[0] - 1) digit_image = self.mnist[ind] for i in range(self.n_frames_total): top = start_y[i] left = start_x[i] bottom = top + self.digit_size_ right = left + self.digit_size_ # Draw digit data[i, top:bottom, left:right] = np.maximum(data[i, top:bottom, left:right], digit_image) data = data[..., np.newaxis] return data
Example #28
Source File: run_audio_attack.py From Black-Box-Audio with MIT License | 6 votes |
def __init__(self, input_wave_file, output_wave_file, target_phrase): self.pop_size = 100 self.elite_size = 10 self.mutation_p = 0.005 self.noise_stdev = 40 self.noise_threshold = 1 self.mu = 0.9 self.alpha = 0.001 self.max_iters = 3000 self.num_points_estimate = 100 self.delta_for_gradient = 100 self.delta_for_perturbation = 1e3 self.input_audio = load_wav(input_wave_file).astype(np.float32) self.pop = np.expand_dims(self.input_audio, axis=0) self.pop = np.tile(self.pop, (self.pop_size, 1)) self.output_wave_file = output_wave_file self.target_phrase = target_phrase self.funcs = self.setup_graph(self.pop, np.array([toks.index(x) for x in target_phrase]))
Example #29
Source File: _io_kernel.py From kaldi-python-io with Apache License 2.0 | 5 votes |
def write_common_mat(fd, mat): """ Write a common matrix """ if mat.dtype not in [np.float32, np.float64]: raise RuntimeError(f"Unsupported numpy dtype: {mat.dtype}") mat_type = 'FM' if mat.dtype == np.float32 else 'DM' write_token(fd, mat_type) num_rows, num_cols = mat.shape write_int32(fd, num_rows) write_int32(fd, num_cols) fd.write(mat.tobytes())
Example #30
Source File: train.py From disentangling_conditional_gans with MIT License | 5 votes |
def process_reals(x, lod, mirror_augment, drange_data, drange_net): with tf.name_scope('ProcessReals'): with tf.name_scope('DynamicRange'): x = tf.cast(x, tf.float32) x = misc.adjust_dynamic_range(x, drange_data, drange_net) if mirror_augment: with tf.name_scope('MirrorAugment'): s = tf.shape(x) mask = tf.random_uniform([s[0], 1, 1, 1], 0.0, 1.0) mask = tf.tile(mask, [1, s[1], s[2], s[3]]) x = tf.where(mask < 0.5, x, tf.reverse(x, axis=[3])) with tf.name_scope('FadeLOD'): # Smooth crossfade between consecutive levels-of-detail. s = tf.shape(x) y = tf.reshape(x, [-1, s[1], s[2]//2, 2, s[3]//2, 2]) y = tf.reduce_mean(y, axis=[3, 5], keep_dims=True) y = tf.tile(y, [1, 1, 1, 2, 1, 2]) y = tf.reshape(y, [-1, s[1], s[2], s[3]]) x = tfutil.lerp(x, y, lod - tf.floor(lod)) with tf.name_scope('UpscaleLOD'): # Upscale to match the expected input/output size of the networks. s = tf.shape(x) factor = tf.cast(2 ** tf.floor(lod), tf.int32) x = tf.reshape(x, [-1, s[1], s[2], 1, s[3], 1]) x = tf.tile(x, [1, 1, 1, factor, 1, factor]) x = tf.reshape(x, [-1, s[1], s[2] * factor, s[3] * factor]) return x #---------------------------------------------------------------------------- # Just-in-time processing of masks before feeding them to the networks.