Python numpy.PINF Examples
The following are 13
code examples of numpy.PINF().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example #1
Source File: util.py From prpy with BSD 3-Clause "New" or "Revised" License | 6 votes |
def ComputeEnabledAABB(kinbody): """ Returns the AABB of the enabled links of a KinBody. @param kinbody: an OpenRAVE KinBody @returns: AABB of the enabled links of the KinBody """ from numpy import NINF, PINF from openravepy import AABB min_corner = numpy.array([PINF] * 3) max_corner = numpy.array([NINF] * 3) for link in kinbody.GetLinks(): if link.IsEnabled(): link_aabb = link.ComputeAABB() center = link_aabb.pos() half_extents = link_aabb.extents() min_corner = numpy.minimum(center - half_extents, min_corner) max_corner = numpy.maximum(center + half_extents, max_corner) center = (min_corner + max_corner) / 2. half_extents = (max_corner - min_corner) / 2. return AABB(center, half_extents)
Example #2
Source File: test_constants.py From chainer with MIT License | 6 votes |
def test_constants(): assert chainerx.Inf is numpy.Inf assert chainerx.Infinity is numpy.Infinity assert chainerx.NAN is numpy.NAN assert chainerx.NINF is numpy.NINF assert chainerx.NZERO is numpy.NZERO assert chainerx.NaN is numpy.NaN assert chainerx.PINF is numpy.PINF assert chainerx.PZERO is numpy.PZERO assert chainerx.e is numpy.e assert chainerx.euler_gamma is numpy.euler_gamma assert chainerx.inf is numpy.inf assert chainerx.infty is numpy.infty assert chainerx.nan is numpy.nan assert chainerx.newaxis is numpy.newaxis assert chainerx.pi is numpy.pi
Example #3
Source File: util.py From revscoring with MIT License | 6 votes |
def normalize(v): if isinstance(v, numpy.bool_): return bool(v) elif isinstance(v, numpy.ndarray): return [normalize(item) for item in v] elif v == numpy.NaN: return "NaN" elif v == numpy.NINF: return "-Infinity" elif v == numpy.PINF: return "Infinity" elif isinstance(v, numpy.float): return float(v) elif isinstance(v, tuple): return list(v) else: return v
Example #4
Source File: continuous_fidelity_entropy_search.py From emukit with Apache License 2.0 | 6 votes |
def _get_proposal_function(self, model, space): # Define proposal function for multi-fidelity ei = ExpectedImprovement(model) def proposal_func(x): x_ = x[None, :] # Map to highest fidelity idx = np.ones((x_.shape[0], 1)) * self.high_fidelity x_ = np.insert(x_, self.target_fidelity_index, idx, axis=1) if space.check_points_in_domain(x_): val = np.log(np.clip(ei.evaluate(x_)[0], 0., np.PINF)) if np.any(np.isnan(val)): return np.array([np.NINF]) else: return val else: return np.array([np.NINF]) return proposal_func
Example #5
Source File: entropy_search.py From emukit with Apache License 2.0 | 6 votes |
def _get_proposal_function(self, model, space): # Define proposal function for multi-fidelity ei = ExpectedImprovement(model) def proposal_func(x): x_ = x[None, :] # Add information source parameter into array idx = np.ones((x_.shape[0], 1)) * self.target_information_source_index x_ = np.insert(x_, self.source_idx, idx, axis=1) if space.check_points_in_domain(x_): val = np.log(np.clip(ei.evaluate(x_)[0], 0., np.PINF)) if np.any(np.isnan(val)): return np.array([np.NINF]) else: return val else: return np.array([np.NINF]) return proposal_func
Example #6
Source File: optimiser.py From sharpy with BSD 3-Clause "New" or "Revised" License | 6 votes |
def get_ground_clearance(data): """ Extracts the minimum value of for_pos[2] and returns that value and the timestep it happened at. """ structure = data.structure min_clear = np.PINF ts_min_clear = None for ts, tstep in enumerate(structure.timestep_info): try: tstep.mb_dict['constraint_00'] continue except KeyError: pass if tstep.for_pos[2] < min_clear: min_clear = tstep.for_pos[2] ts_min_clear = ts return min_clear, ts_min_clear
Example #7
Source File: anneal.py From Computable with MIT License | 5 votes |
def init(self, **options): self.__dict__.update(options) self.lower = asarray(self.lower) self.lower = where(self.lower == numpy.NINF, -_double_max, self.lower) self.upper = asarray(self.upper) self.upper = where(self.upper == numpy.PINF, _double_max, self.upper) self.k = 0 self.accepted = 0 self.feval = 0 self.tests = 0
Example #8
Source File: augs.py From hover_net with MIT License | 5 votes |
def _get_weight_map(self, ann, inst_list): if len(inst_list) <= 1: # 1 instance only return np.zeros(ann.shape[:2]) stacked_inst_bgd_dst = np.zeros(ann.shape[:2] +(len(inst_list),)) for idx, inst_id in enumerate(inst_list): inst_bgd_map = np.array(ann != inst_id , np.uint8) inst_bgd_dst = distance_transform_edt(inst_bgd_map) stacked_inst_bgd_dst[...,idx] = inst_bgd_dst near1_dst = np.amin(stacked_inst_bgd_dst, axis=2) near2_dst = np.expand_dims(near1_dst ,axis=2) near2_dst = stacked_inst_bgd_dst - near2_dst near2_dst[near2_dst == 0] = np.PINF # very large near2_dst = np.amin(near2_dst, axis=2) near2_dst[ann > 0] = 0 # the instances near2_dst = near2_dst + near1_dst # to fix pixel where near1 == near2 near2_eve = np.expand_dims(near1_dst ,axis=2) # to avoide the warning of a / 0 near2_eve = (1.0 + stacked_inst_bgd_dst) / (1.0 + near2_eve) near2_eve[near2_eve != 1] = 0 near2_eve = np.sum(near2_eve, axis=2) near2_dst[near2_eve > 1] = near1_dst[near2_eve > 1] # pix_dst = near1_dst + near2_dst pen_map = pix_dst / self.sigma pen_map = self.w0 * np.exp(- pen_map**2 / 2) pen_map[ann > 0] = 0 # inner instances zero return pen_map
Example #9
Source File: test_util.py From revscoring with MIT License | 5 votes |
def test_normalize_json(): doc = {"foo": {numpy.bool_(True): "value"}, "what": numpy.bool_(False), "this": numpy.PINF} normalized_doc = normalize_json(doc) assert isinstance(normalized_doc['what'], bool) assert isinstance(list(normalized_doc['foo'].keys())[0], bool) assert normalized_doc['this'] == "Infinity"
Example #10
Source File: _lagrangian.py From fairlearn with MIT License | 5 votes |
def best_h(self, lambda_vec): """Solve the best-response problem. Returns the classifier that solves the best-response problem for the vector of Lagrange multipliers `lambda_vec`. """ classifier = self._call_oracle(lambda_vec) def h(X): return classifier.predict(X) h_error = self.obj.gamma(h)[0] h_gamma = self.constraints.gamma(h) h_value = h_error + h_gamma.dot(lambda_vec) if not self.hs.empty: values = self.errors + self.gammas.transpose().dot(lambda_vec) best_idx = values.idxmin() best_value = values[best_idx] else: best_idx = -1 best_value = np.PINF if h_value < best_value - _PRECISION: logger.debug("%sbest_h: val improvement %f", _LINE, best_value - h_value) h_idx = len(self.hs) self.hs.at[h_idx] = h self.predictors.at[h_idx] = classifier self.errors.at[h_idx] = h_error self.gammas[h_idx] = h_gamma self.lambdas[h_idx] = lambda_vec.copy() best_idx = h_idx return self.hs[best_idx], best_idx
Example #11
Source File: objects.py From schema-games with MIT License | 5 votes |
def __init__(self, position, nzis=None, shape=None, hitpoints=np.PINF, is_entity=True, color=(128, 128, 128), visible=True, indirect_collision_effects=True): self._position = np.array(position) self.hitpoints = hitpoints self.is_entity = is_entity self.color = color self.visible = visible self.is_rectangular = True self.indirect_collision_effects = indirect_collision_effects assert self.hitpoints > 0 assert ((nzis is None and shape is not None) or (nzis is not None and shape is None)) # Set non-zero indices of the object mask's if nzis is None: self._nzis = shape_to_nzis(shape) else: self._nzis = np.array(nzis) if is_entity: self.entity_id = BreakoutObject.unique_entity_id BreakoutObject.unique_entity_id += MAX_NZIS_PER_ENTITY assert len(self._nzis) <= MAX_NZIS_PER_ENTITY else: self.entity_id = None self.object_id = BreakoutObject.unique_object_id BreakoutObject.unique_object_id += 1 BreakoutObject.register_color(self.color) # Sets up slots for memoization self.reset_cache()
Example #12
Source File: play.py From schema-games with MIT License | 5 votes |
def play_game(environment_class, cheat_mode=DEFAULT_CHEAT_MODE, debug=DEFAULT_DEBUG, fps=30): """ Interactively play an environment. Parameters ---------- environment_class : type A subclass of schema_games.breakout.core.BreakoutEngine that represents a game. A convenient list is included in schema_games.breakout.games. cheat_mode : bool If True, player has an infinite amount of lives. debug : bool If True, print debugging messages and perform additional sanity checks. fps : int Frame rate per second at which to display the game. """ print blue("-" * 80) print blue("Starting interactive game. " "Press <ESC> at any moment to terminate.") print blue("-" * 80) env_args = { 'return_state_as_image': True, 'debugging': debug, } if cheat_mode: env_args['num_lives'] = np.PINF env = environment_class(**env_args) keys_to_action = defaultdict(lambda: env.NOOP, { (pygame.K_LEFT,): env.LEFT, (pygame.K_RIGHT,): env.RIGHT, }) play(env, fps=fps, keys_to_action=keys_to_action, zoom=ZOOM_FACTOR)
Example #13
Source File: vectorfield.py From prpy with BSD 3-Clause "New" or "Revised" License | 4 votes |
def PlanToEndEffectorPose(self, robot, goal_pose, timelimit=5.0, pose_error_tol=0.01, integration_interval=10.0, **kw_args): """ Plan to an end effector pose by following a geodesic loss function in SE(3) via an optimized Jacobian. @param robot @param goal_pose desired end-effector pose @param timelimit time limit before giving up @param pose_error_tol in meters @param integration_interval The time interval to integrate over @return traj """ manip = robot.GetActiveManipulator() def vf_geodesic(): """ Define a joint-space vector field, that moves along the geodesic (shortest path) from the start pose to the goal pose. """ twist = util.GeodesicTwist(manip.GetEndEffectorTransform(), goal_pose) dqout, tout = util.ComputeJointVelocityFromTwist( robot, twist, joint_velocity_limits=numpy.PINF) # Go as fast as possible vlimits = robot.GetDOFVelocityLimits(robot.GetActiveDOFIndices()) return min(abs(vlimits[i] / dqout[i]) if dqout[i] != 0. else 1. for i in xrange(vlimits.shape[0])) * dqout def CloseEnough(): """ The termination condition. At each integration step, the geodesic error between the start and goal poses is compared. If within threshold, the integration will terminate. """ pose_error = util.GetGeodesicDistanceBetweenTransforms( manip.GetEndEffectorTransform(), goal_pose) if pose_error < pose_error_tol: return Status.TERMINATE return Status.CONTINUE traj = self.FollowVectorField(robot, vf_geodesic, CloseEnough, integration_interval, timelimit, **kw_args) # Flag this trajectory as unconstrained. This overwrites the # constrained flag set by FollowVectorField. util.SetTrajectoryTags(traj, {Tags.CONSTRAINED: False}, append=True) return traj