Python numpy.character() Examples
The following are 23
code examples of numpy.character().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example #1
Source File: column.py From Carnets with BSD 3-Clause "New" or "Revised" License | 6 votes |
def _check_string_truncate(self, value): """ Emit a warning if any elements of ``value`` will be truncated when ``value`` is assigned to self. """ # Convert input ``value`` to the string dtype of this column and # find the length of the longest string in the array. value = np.asanyarray(value, dtype=self.dtype.type) if value.size == 0: return value_str_len = np.char.str_len(value).max() # Parse the array-protocol typestring (e.g. '|U15') of self.dtype which # has the character repeat count on the right side. self_str_len = dtype_bytes_or_chars(self.dtype) if value_str_len > self_str_len: warnings.warn('truncated right side string(s) longer than {} ' 'character(s) during assignment' .format(self_str_len), StringTruncateWarning, stacklevel=3)
Example #2
Source File: testtools.py From PyReshaper with Apache License 2.0 | 5 votes |
def _bytesize(tc): DTYPE_MAP = {'d': np.float64, 'f': np.float32, 'l': np.long, 'i': np.int32, 'h': np.int16, 'b': np.int8, 'S1': np.character} return np.dtype(DTYPE_MAP.get(tc, np.float)).itemsize #============================================================================== # Private Size from Shape Calculator #==============================================================================
Example #3
Source File: operations.py From Carnets with BSD 3-Clause "New" or "Revised" License | 5 votes |
def common_dtype(cols): """ Use numpy to find the common dtype for a list of columns. Only allow columns within the following fundamental numpy data types: np.bool_, np.object_, np.number, np.character, np.void """ try: return metadata.common_dtype(cols) except metadata.MergeConflictError as err: tme = TableMergeError('Columns have incompatible types {}' .format(err._incompat_types)) tme._incompat_types = err._incompat_types raise tme
Example #4
Source File: astropy_py3compat.py From kgsgo-dataset-preprocessor with Mozilla Public License 2.0 | 5 votes |
def __getitem__(self, obj): val = numpy.ndarray.__getitem__(self, obj) if isinstance(val, numpy.character): temp = val.rstrip() if numpy.char._len(temp) == 0: val = '' else: val = temp return val
Example #5
Source File: column.py From Carnets with BSD 3-Clause "New" or "Revised" License | 5 votes |
def __setitem__(self, index, value): if self.dtype.char == 'S': value = self._encode_str(value) # Issue warning for string assignment that truncates ``value`` if issubclass(self.dtype.type, np.character): self._check_string_truncate(value) # update indices self.info.adjust_indices(index, value, len(self)) # Set items using a view of the underlying data, as it gives an # order-of-magnitude speed-up. [#2994] self.data[index] = value
Example #6
Source File: column.py From Carnets with BSD 3-Clause "New" or "Revised" License | 5 votes |
def _expand_string_array_for_values(arr, values): """ For string-dtype return a version of ``arr`` that is wide enough for ``values``. If ``arr`` is not string-dtype or does not need expansion then return ``arr``. Parameters ---------- arr : np.ndarray Input array values : scalar or array_like Values for width comparison for string arrays Returns ------- arr_expanded : np.ndarray """ if arr.dtype.kind in ('U', 'S') and values is not np.ma.masked: # Find the length of the longest string in the new values. values_str_len = np.char.str_len(values).max() # Determine character repeat count of arr.dtype. Returns a positive # int or None (something like 'U0' is not possible in numpy). If new values # are longer than current then make a new (wider) version of arr. arr_str_len = dtype_bytes_or_chars(arr.dtype) if arr_str_len and values_str_len > arr_str_len: arr_dtype = arr.dtype.byteorder + arr.dtype.kind + str(values_str_len) arr = arr.astype(arr_dtype) return arr
Example #7
Source File: np_utils.py From Carnets with BSD 3-Clause "New" or "Revised" License | 5 votes |
def common_dtype(cols): """ Use numpy to find the common dtype for a list of structured ndarray columns. Only allow columns within the following fundamental numpy data types: np.bool_, np.object_, np.number, np.character, np.void """ np_types = (np.bool_, np.object_, np.number, np.character, np.void) uniq_types = set(tuple(issubclass(col.dtype.type, np_type) for np_type in np_types) for col in cols) if len(uniq_types) > 1: # Embed into the exception the actual list of incompatible types. incompat_types = [col.dtype.name for col in cols] tme = TableMergeError('Columns have incompatible types {}' .format(incompat_types)) tme._incompat_types = incompat_types raise tme arrs = [np.empty(1, dtype=col.dtype) for col in cols] # For string-type arrays need to explicitly fill in non-zero # values or the final arr_common = .. step is unpredictable. for arr in arrs: if arr.dtype.kind in ('S', 'U'): arr[0] = '0' * arr.itemsize arr_common = np.array([arr[0] for arr in arrs]) return arr_common.dtype.str
Example #8
Source File: normalize.py From loompy with BSD 2-Clause "Simplified" License | 5 votes |
def normalize_attr_values(a: Any, use_object_strings: bool = False) -> np.ndarray: """ Take all kinds of input values and validate/normalize them. Args: a List, tuple, np.matrix, np.ndarray or sparse matrix Elements can be strings, numbers or bools Returns a_normalized An np.ndarray with elements conforming to one of the valid Loom attribute types Remarks: This method should be used to prepare the values to be stored in the HDF5 file. You should not return the values to the caller; for that, use materialize_attr_values() """ scalar = False if np.isscalar(a): a = np.array([a]) scalar = True arr = normalize_attr_array(a) if np.issubdtype(arr.dtype, np.integer) or np.issubdtype(arr.dtype, np.floating): pass # We allow all these types elif np.issubdtype(arr.dtype, np.character) or np.issubdtype(arr.dtype, np.object_): if use_object_strings: arr = np.array([str(elm) for elm in a], dtype=object) else: arr = normalize_attr_strings(arr) elif np.issubdtype(arr.dtype, np.bool_): arr = arr.astype('ubyte') if scalar: return arr[0] else: return arr
Example #9
Source File: input_adapter.py From autokeras with MIT License | 5 votes |
def check(self, x): """Record any information needed by transform.""" if not isinstance(x, (np.ndarray, tf.data.Dataset)): raise TypeError('Expect the data to TextInput to be numpy.ndarray or ' 'tf.data.Dataset, but got {type}.'.format(type=type(x))) if isinstance(x, np.ndarray) and x.ndim != 1: raise ValueError('Expect the data to TextInput to have 1 dimension, but ' 'got input shape {shape} with {ndim} dimensions'.format( shape=x.shape, ndim=x.ndim)) if isinstance(x, np.ndarray) and not np.issubdtype(x.dtype, np.character): raise TypeError('Expect the data to TextInput to be strings, but got ' '{type}.'.format(type=x.dtype))
Example #10
Source File: numeric.py From twitter-stock-recommendation with MIT License | 4 votes |
def count_nonzero(a, axis=None): """ Counts the number of non-zero values in the array ``a``. The word "non-zero" is in reference to the Python 2.x built-in method ``__nonzero__()`` (renamed ``__bool__()`` in Python 3.x) of Python objects that tests an object's "truthfulness". For example, any number is considered truthful if it is nonzero, whereas any string is considered truthful if it is not the empty string. Thus, this function (recursively) counts how many elements in ``a`` (and in sub-arrays thereof) have their ``__nonzero__()`` or ``__bool__()`` method evaluated to ``True``. Parameters ---------- a : array_like The array for which to count non-zeros. axis : int or tuple, optional Axis or tuple of axes along which to count non-zeros. Default is None, meaning that non-zeros will be counted along a flattened version of ``a``. .. versionadded:: 1.12.0 Returns ------- count : int or array of int Number of non-zero values in the array along a given axis. Otherwise, the total number of non-zero values in the array is returned. See Also -------- nonzero : Return the coordinates of all the non-zero values. Examples -------- >>> np.count_nonzero(np.eye(4)) 4 >>> np.count_nonzero([[0,1,7,0,0],[3,0,0,2,19]]) 5 >>> np.count_nonzero([[0,1,7,0,0],[3,0,0,2,19]], axis=0) array([1, 1, 1, 1, 1]) >>> np.count_nonzero([[0,1,7,0,0],[3,0,0,2,19]], axis=1) array([2, 3]) """ if axis is None: return multiarray.count_nonzero(a) a = asanyarray(a) # TODO: this works around .astype(bool) not working properly (gh-9847) if np.issubdtype(a.dtype, np.character): a_bool = a != a.dtype.type() else: a_bool = a.astype(np.bool_, copy=False) return a_bool.sum(axis=axis, dtype=np.intp)
Example #11
Source File: utils.py From differential-privacy-library with MIT License | 4 votes |
def count_nonzero(array, epsilon=1.0, accountant=None, axis=None, keepdims=False): r"""Counts the number of non-zero values in the array ``array`` with differential privacy. The word "non-zero" is in reference to the Python 2.x built-in method ``__nonzero__()`` (renamed ``__bool__()`` in Python 3.x) of Python objects that tests an object's "truthfulness". For example, any number is considered truthful if it is nonzero, whereas any string is considered truthful if it is not the empty string. Thus, this function (recursively) counts how many elements in ``array`` (and in sub-arrays thereof) have their ``__nonzero__()`` or ``__bool__()`` method evaluated to ``True``. Parameters ---------- array : array_like The array for which to count non-zeros. epsilon : float, default: 1.0 Privacy parameter :math:`\epsilon`. accountant : BudgetAccountant, optional Accountant to keep track of privacy budget. axis : int or tuple, optional Axis or tuple of axes along which to count non-zeros. Default is None, meaning that non-zeros will be counted along a flattened version of ``array``. keepdims : bool, optional If this is set to True, the axes that are counted are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the input array. Returns ------- count : int or array of int Differentially private number of non-zero values in the array along a given axis. Otherwise, the total number of non-zero values in the array is returned. """ array = np.asanyarray(array) if np.issubdtype(array.dtype, np.character): array_bool = array != array.dtype.type() else: array_bool = array.astype(np.bool_, copy=False) return sum(array_bool, axis=axis, dtype=np.intp, bounds=(0, 1), epsilon=epsilon, accountant=accountant, keepdims=keepdims)
Example #12
Source File: numeric.py From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License | 4 votes |
def count_nonzero(a, axis=None): """ Counts the number of non-zero values in the array ``a``. The word "non-zero" is in reference to the Python 2.x built-in method ``__nonzero__()`` (renamed ``__bool__()`` in Python 3.x) of Python objects that tests an object's "truthfulness". For example, any number is considered truthful if it is nonzero, whereas any string is considered truthful if it is not the empty string. Thus, this function (recursively) counts how many elements in ``a`` (and in sub-arrays thereof) have their ``__nonzero__()`` or ``__bool__()`` method evaluated to ``True``. Parameters ---------- a : array_like The array for which to count non-zeros. axis : int or tuple, optional Axis or tuple of axes along which to count non-zeros. Default is None, meaning that non-zeros will be counted along a flattened version of ``a``. .. versionadded:: 1.12.0 Returns ------- count : int or array of int Number of non-zero values in the array along a given axis. Otherwise, the total number of non-zero values in the array is returned. See Also -------- nonzero : Return the coordinates of all the non-zero values. Examples -------- >>> np.count_nonzero(np.eye(4)) 4 >>> np.count_nonzero([[0,1,7,0,0],[3,0,0,2,19]]) 5 >>> np.count_nonzero([[0,1,7,0,0],[3,0,0,2,19]], axis=0) array([1, 1, 1, 1, 1]) >>> np.count_nonzero([[0,1,7,0,0],[3,0,0,2,19]], axis=1) array([2, 3]) """ if axis is None: return multiarray.count_nonzero(a) a = asanyarray(a) # TODO: this works around .astype(bool) not working properly (gh-9847) if np.issubdtype(a.dtype, np.character): a_bool = a != a.dtype.type() else: a_bool = a.astype(np.bool_, copy=False) return a_bool.sum(axis=axis, dtype=np.intp)
Example #13
Source File: numeric.py From Carnets with BSD 3-Clause "New" or "Revised" License | 4 votes |
def count_nonzero(a, axis=None): """ Counts the number of non-zero values in the array ``a``. The word "non-zero" is in reference to the Python 2.x built-in method ``__nonzero__()`` (renamed ``__bool__()`` in Python 3.x) of Python objects that tests an object's "truthfulness". For example, any number is considered truthful if it is nonzero, whereas any string is considered truthful if it is not the empty string. Thus, this function (recursively) counts how many elements in ``a`` (and in sub-arrays thereof) have their ``__nonzero__()`` or ``__bool__()`` method evaluated to ``True``. Parameters ---------- a : array_like The array for which to count non-zeros. axis : int or tuple, optional Axis or tuple of axes along which to count non-zeros. Default is None, meaning that non-zeros will be counted along a flattened version of ``a``. .. versionadded:: 1.12.0 Returns ------- count : int or array of int Number of non-zero values in the array along a given axis. Otherwise, the total number of non-zero values in the array is returned. See Also -------- nonzero : Return the coordinates of all the non-zero values. Examples -------- >>> np.count_nonzero(np.eye(4)) 4 >>> np.count_nonzero([[0,1,7,0,0],[3,0,0,2,19]]) 5 >>> np.count_nonzero([[0,1,7,0,0],[3,0,0,2,19]], axis=0) array([1, 1, 1, 1, 1]) >>> np.count_nonzero([[0,1,7,0,0],[3,0,0,2,19]], axis=1) array([2, 3]) """ if axis is None: return multiarray.count_nonzero(a) a = asanyarray(a) # TODO: this works around .astype(bool) not working properly (gh-9847) if np.issubdtype(a.dtype, np.character): a_bool = a != a.dtype.type() else: a_bool = a.astype(np.bool_, copy=False) return a_bool.sum(axis=axis, dtype=np.intp)
Example #14
Source File: metadata.py From Carnets with BSD 3-Clause "New" or "Revised" License | 4 votes |
def common_dtype(arrs): """ Use numpy to find the common dtype for a list of ndarrays. Only allow arrays within the following fundamental numpy data types: ``np.bool_``, ``np.object_``, ``np.number``, ``np.character``, ``np.void`` Parameters ---------- arrs : list of ndarray objects Arrays for which to find the common dtype Returns ------- dtype_str : str String representation of dytpe (dtype ``str`` attribute) """ def dtype(arr): return getattr(arr, 'dtype', np.dtype('O')) np_types = (np.bool_, np.object_, np.number, np.character, np.void) uniq_types = set(tuple(issubclass(dtype(arr).type, np_type) for np_type in np_types) for arr in arrs) if len(uniq_types) > 1: # Embed into the exception the actual list of incompatible types. incompat_types = [dtype(arr).name for arr in arrs] tme = MergeConflictError('Arrays have incompatible types {}' .format(incompat_types)) tme._incompat_types = incompat_types raise tme arrs = [np.empty(1, dtype=dtype(arr)) for arr in arrs] # For string-type arrays need to explicitly fill in non-zero # values or the final arr_common = .. step is unpredictable. for i, arr in enumerate(arrs): if arr.dtype.kind in ('S', 'U'): arrs[i] = [('0' if arr.dtype.kind == 'U' else b'0') * dtype_bytes_or_chars(arr.dtype)] arr_common = np.array([arr[0] for arr in arrs]) return arr_common.dtype.str
Example #15
Source File: numeric.py From coffeegrindsize with MIT License | 4 votes |
def count_nonzero(a, axis=None): """ Counts the number of non-zero values in the array ``a``. The word "non-zero" is in reference to the Python 2.x built-in method ``__nonzero__()`` (renamed ``__bool__()`` in Python 3.x) of Python objects that tests an object's "truthfulness". For example, any number is considered truthful if it is nonzero, whereas any string is considered truthful if it is not the empty string. Thus, this function (recursively) counts how many elements in ``a`` (and in sub-arrays thereof) have their ``__nonzero__()`` or ``__bool__()`` method evaluated to ``True``. Parameters ---------- a : array_like The array for which to count non-zeros. axis : int or tuple, optional Axis or tuple of axes along which to count non-zeros. Default is None, meaning that non-zeros will be counted along a flattened version of ``a``. .. versionadded:: 1.12.0 Returns ------- count : int or array of int Number of non-zero values in the array along a given axis. Otherwise, the total number of non-zero values in the array is returned. See Also -------- nonzero : Return the coordinates of all the non-zero values. Examples -------- >>> np.count_nonzero(np.eye(4)) 4 >>> np.count_nonzero([[0,1,7,0,0],[3,0,0,2,19]]) 5 >>> np.count_nonzero([[0,1,7,0,0],[3,0,0,2,19]], axis=0) array([1, 1, 1, 1, 1]) >>> np.count_nonzero([[0,1,7,0,0],[3,0,0,2,19]], axis=1) array([2, 3]) """ if axis is None: return multiarray.count_nonzero(a) a = asanyarray(a) # TODO: this works around .astype(bool) not working properly (gh-9847) if np.issubdtype(a.dtype, np.character): a_bool = a != a.dtype.type() else: a_bool = a.astype(np.bool_, copy=False) return a_bool.sum(axis=axis, dtype=np.intp)
Example #16
Source File: _utils.py From sparse with BSD 3-Clause "New" or "Revised" License | 4 votes |
def equivalent(x, y): """ Checks the equivalence of two scalars or arrays with broadcasting. Assumes a consistent dtype. Parameters ---------- x : scalar or numpy.ndarray y : scalar or numpy.ndarray Returns ------- equivalent : scalar or numpy.ndarray The element-wise comparison of where two arrays are equivalent. Examples -------- >>> equivalent(1, 1) True >>> equivalent(np.nan, np.nan + 1) True >>> equivalent(1, 2) False >>> equivalent(np.inf, np.inf) True >>> equivalent(np.PZERO, np.NZERO) True """ x = np.asarray(x) y = np.asarray(y) # Can't contain NaNs if any(np.issubdtype(x.dtype, t) for t in [np.integer, np.bool_, np.character]): return x == y # Can contain NaNs # FIXME: Complex floats and np.void with multiple values can't be compared properly. # lgtm [py/comparison-of-identical-expressions] return (x == y) | ((x != x) & (y != y)) # copied from zarr # See https://github.com/zarr-developers/zarr-python/blob/master/zarr/util.py
Example #17
Source File: numeric.py From pySINDy with MIT License | 4 votes |
def count_nonzero(a, axis=None): """ Counts the number of non-zero values in the array ``a``. The word "non-zero" is in reference to the Python 2.x built-in method ``__nonzero__()`` (renamed ``__bool__()`` in Python 3.x) of Python objects that tests an object's "truthfulness". For example, any number is considered truthful if it is nonzero, whereas any string is considered truthful if it is not the empty string. Thus, this function (recursively) counts how many elements in ``a`` (and in sub-arrays thereof) have their ``__nonzero__()`` or ``__bool__()`` method evaluated to ``True``. Parameters ---------- a : array_like The array for which to count non-zeros. axis : int or tuple, optional Axis or tuple of axes along which to count non-zeros. Default is None, meaning that non-zeros will be counted along a flattened version of ``a``. .. versionadded:: 1.12.0 Returns ------- count : int or array of int Number of non-zero values in the array along a given axis. Otherwise, the total number of non-zero values in the array is returned. See Also -------- nonzero : Return the coordinates of all the non-zero values. Examples -------- >>> np.count_nonzero(np.eye(4)) 4 >>> np.count_nonzero([[0,1,7,0,0],[3,0,0,2,19]]) 5 >>> np.count_nonzero([[0,1,7,0,0],[3,0,0,2,19]], axis=0) array([1, 1, 1, 1, 1]) >>> np.count_nonzero([[0,1,7,0,0],[3,0,0,2,19]], axis=1) array([2, 3]) """ if axis is None: return multiarray.count_nonzero(a) a = asanyarray(a) # TODO: this works around .astype(bool) not working properly (gh-9847) if np.issubdtype(a.dtype, np.character): a_bool = a != a.dtype.type() else: a_bool = a.astype(np.bool_, copy=False) return a_bool.sum(axis=axis, dtype=np.intp)
Example #18
Source File: numeric.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 4 votes |
def count_nonzero(a, axis=None): """ Counts the number of non-zero values in the array ``a``. The word "non-zero" is in reference to the Python 2.x built-in method ``__nonzero__()`` (renamed ``__bool__()`` in Python 3.x) of Python objects that tests an object's "truthfulness". For example, any number is considered truthful if it is nonzero, whereas any string is considered truthful if it is not the empty string. Thus, this function (recursively) counts how many elements in ``a`` (and in sub-arrays thereof) have their ``__nonzero__()`` or ``__bool__()`` method evaluated to ``True``. Parameters ---------- a : array_like The array for which to count non-zeros. axis : int or tuple, optional Axis or tuple of axes along which to count non-zeros. Default is None, meaning that non-zeros will be counted along a flattened version of ``a``. .. versionadded:: 1.12.0 Returns ------- count : int or array of int Number of non-zero values in the array along a given axis. Otherwise, the total number of non-zero values in the array is returned. See Also -------- nonzero : Return the coordinates of all the non-zero values. Examples -------- >>> np.count_nonzero(np.eye(4)) 4 >>> np.count_nonzero([[0,1,7,0,0],[3,0,0,2,19]]) 5 >>> np.count_nonzero([[0,1,7,0,0],[3,0,0,2,19]], axis=0) array([1, 1, 1, 1, 1]) >>> np.count_nonzero([[0,1,7,0,0],[3,0,0,2,19]], axis=1) array([2, 3]) """ if axis is None: return multiarray.count_nonzero(a) a = asanyarray(a) # TODO: this works around .astype(bool) not working properly (gh-9847) if np.issubdtype(a.dtype, np.character): a_bool = a != a.dtype.type() else: a_bool = a.astype(np.bool_, copy=False) return a_bool.sum(axis=axis, dtype=np.intp)
Example #19
Source File: numeric.py From GraphicDesignPatternByPython with MIT License | 4 votes |
def count_nonzero(a, axis=None): """ Counts the number of non-zero values in the array ``a``. The word "non-zero" is in reference to the Python 2.x built-in method ``__nonzero__()`` (renamed ``__bool__()`` in Python 3.x) of Python objects that tests an object's "truthfulness". For example, any number is considered truthful if it is nonzero, whereas any string is considered truthful if it is not the empty string. Thus, this function (recursively) counts how many elements in ``a`` (and in sub-arrays thereof) have their ``__nonzero__()`` or ``__bool__()`` method evaluated to ``True``. Parameters ---------- a : array_like The array for which to count non-zeros. axis : int or tuple, optional Axis or tuple of axes along which to count non-zeros. Default is None, meaning that non-zeros will be counted along a flattened version of ``a``. .. versionadded:: 1.12.0 Returns ------- count : int or array of int Number of non-zero values in the array along a given axis. Otherwise, the total number of non-zero values in the array is returned. See Also -------- nonzero : Return the coordinates of all the non-zero values. Examples -------- >>> np.count_nonzero(np.eye(4)) 4 >>> np.count_nonzero([[0,1,7,0,0],[3,0,0,2,19]]) 5 >>> np.count_nonzero([[0,1,7,0,0],[3,0,0,2,19]], axis=0) array([1, 1, 1, 1, 1]) >>> np.count_nonzero([[0,1,7,0,0],[3,0,0,2,19]], axis=1) array([2, 3]) """ if axis is None: return multiarray.count_nonzero(a) a = asanyarray(a) # TODO: this works around .astype(bool) not working properly (gh-9847) if np.issubdtype(a.dtype, np.character): a_bool = a != a.dtype.type() else: a_bool = a.astype(np.bool_, copy=False) return a_bool.sum(axis=axis, dtype=np.intp)
Example #20
Source File: numeric.py From Mastering-Elasticsearch-7.0 with MIT License | 4 votes |
def count_nonzero(a, axis=None): """ Counts the number of non-zero values in the array ``a``. The word "non-zero" is in reference to the Python 2.x built-in method ``__nonzero__()`` (renamed ``__bool__()`` in Python 3.x) of Python objects that tests an object's "truthfulness". For example, any number is considered truthful if it is nonzero, whereas any string is considered truthful if it is not the empty string. Thus, this function (recursively) counts how many elements in ``a`` (and in sub-arrays thereof) have their ``__nonzero__()`` or ``__bool__()`` method evaluated to ``True``. Parameters ---------- a : array_like The array for which to count non-zeros. axis : int or tuple, optional Axis or tuple of axes along which to count non-zeros. Default is None, meaning that non-zeros will be counted along a flattened version of ``a``. .. versionadded:: 1.12.0 Returns ------- count : int or array of int Number of non-zero values in the array along a given axis. Otherwise, the total number of non-zero values in the array is returned. See Also -------- nonzero : Return the coordinates of all the non-zero values. Examples -------- >>> np.count_nonzero(np.eye(4)) 4 >>> np.count_nonzero([[0,1,7,0,0],[3,0,0,2,19]]) 5 >>> np.count_nonzero([[0,1,7,0,0],[3,0,0,2,19]], axis=0) array([1, 1, 1, 1, 1]) >>> np.count_nonzero([[0,1,7,0,0],[3,0,0,2,19]], axis=1) array([2, 3]) """ if axis is None: return multiarray.count_nonzero(a) a = asanyarray(a) # TODO: this works around .astype(bool) not working properly (gh-9847) if np.issubdtype(a.dtype, np.character): a_bool = a != a.dtype.type() else: a_bool = a.astype(np.bool_, copy=False) return a_bool.sum(axis=axis, dtype=np.intp)
Example #21
Source File: numeric.py From vnpy_crypto with MIT License | 4 votes |
def count_nonzero(a, axis=None): """ Counts the number of non-zero values in the array ``a``. The word "non-zero" is in reference to the Python 2.x built-in method ``__nonzero__()`` (renamed ``__bool__()`` in Python 3.x) of Python objects that tests an object's "truthfulness". For example, any number is considered truthful if it is nonzero, whereas any string is considered truthful if it is not the empty string. Thus, this function (recursively) counts how many elements in ``a`` (and in sub-arrays thereof) have their ``__nonzero__()`` or ``__bool__()`` method evaluated to ``True``. Parameters ---------- a : array_like The array for which to count non-zeros. axis : int or tuple, optional Axis or tuple of axes along which to count non-zeros. Default is None, meaning that non-zeros will be counted along a flattened version of ``a``. .. versionadded:: 1.12.0 Returns ------- count : int or array of int Number of non-zero values in the array along a given axis. Otherwise, the total number of non-zero values in the array is returned. See Also -------- nonzero : Return the coordinates of all the non-zero values. Examples -------- >>> np.count_nonzero(np.eye(4)) 4 >>> np.count_nonzero([[0,1,7,0,0],[3,0,0,2,19]]) 5 >>> np.count_nonzero([[0,1,7,0,0],[3,0,0,2,19]], axis=0) array([1, 1, 1, 1, 1]) >>> np.count_nonzero([[0,1,7,0,0],[3,0,0,2,19]], axis=1) array([2, 3]) """ if axis is None: return multiarray.count_nonzero(a) a = asanyarray(a) # TODO: this works around .astype(bool) not working properly (gh-9847) if np.issubdtype(a.dtype, np.character): a_bool = a != a.dtype.type() else: a_bool = a.astype(np.bool_, copy=False) return a_bool.sum(axis=axis, dtype=np.intp)
Example #22
Source File: numeric.py From lambda-packs with MIT License | 4 votes |
def count_nonzero(a, axis=None): """ Counts the number of non-zero values in the array ``a``. The word "non-zero" is in reference to the Python 2.x built-in method ``__nonzero__()`` (renamed ``__bool__()`` in Python 3.x) of Python objects that tests an object's "truthfulness". For example, any number is considered truthful if it is nonzero, whereas any string is considered truthful if it is not the empty string. Thus, this function (recursively) counts how many elements in ``a`` (and in sub-arrays thereof) have their ``__nonzero__()`` or ``__bool__()`` method evaluated to ``True``. Parameters ---------- a : array_like The array for which to count non-zeros. axis : int or tuple, optional Axis or tuple of axes along which to count non-zeros. Default is None, meaning that non-zeros will be counted along a flattened version of ``a``. .. versionadded:: 1.12.0 Returns ------- count : int or array of int Number of non-zero values in the array along a given axis. Otherwise, the total number of non-zero values in the array is returned. See Also -------- nonzero : Return the coordinates of all the non-zero values. Examples -------- >>> np.count_nonzero(np.eye(4)) 4 >>> np.count_nonzero([[0,1,7,0,0],[3,0,0,2,19]]) 5 >>> np.count_nonzero([[0,1,7,0,0],[3,0,0,2,19]], axis=0) array([1, 1, 1, 1, 1]) >>> np.count_nonzero([[0,1,7,0,0],[3,0,0,2,19]], axis=1) array([2, 3]) """ if axis is None: return multiarray.count_nonzero(a) a = asanyarray(a) # TODO: this works around .astype(bool) not working properly (gh-9847) if np.issubdtype(a.dtype, np.character): a_bool = a != a.dtype.type() else: a_bool = a.astype(np.bool_, copy=False) return a_bool.sum(axis=axis, dtype=np.intp)
Example #23
Source File: numeric.py From recruit with Apache License 2.0 | 4 votes |
def count_nonzero(a, axis=None): """ Counts the number of non-zero values in the array ``a``. The word "non-zero" is in reference to the Python 2.x built-in method ``__nonzero__()`` (renamed ``__bool__()`` in Python 3.x) of Python objects that tests an object's "truthfulness". For example, any number is considered truthful if it is nonzero, whereas any string is considered truthful if it is not the empty string. Thus, this function (recursively) counts how many elements in ``a`` (and in sub-arrays thereof) have their ``__nonzero__()`` or ``__bool__()`` method evaluated to ``True``. Parameters ---------- a : array_like The array for which to count non-zeros. axis : int or tuple, optional Axis or tuple of axes along which to count non-zeros. Default is None, meaning that non-zeros will be counted along a flattened version of ``a``. .. versionadded:: 1.12.0 Returns ------- count : int or array of int Number of non-zero values in the array along a given axis. Otherwise, the total number of non-zero values in the array is returned. See Also -------- nonzero : Return the coordinates of all the non-zero values. Examples -------- >>> np.count_nonzero(np.eye(4)) 4 >>> np.count_nonzero([[0,1,7,0,0],[3,0,0,2,19]]) 5 >>> np.count_nonzero([[0,1,7,0,0],[3,0,0,2,19]], axis=0) array([1, 1, 1, 1, 1]) >>> np.count_nonzero([[0,1,7,0,0],[3,0,0,2,19]], axis=1) array([2, 3]) """ if axis is None: return multiarray.count_nonzero(a) a = asanyarray(a) # TODO: this works around .astype(bool) not working properly (gh-9847) if np.issubdtype(a.dtype, np.character): a_bool = a != a.dtype.type() else: a_bool = a.astype(np.bool_, copy=False) return a_bool.sum(axis=axis, dtype=np.intp)